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Abstract of the Dissertation

Policy Management and Decentralized

Debugging in the Asbestos Operating System

by

Petros Efstathopoulos

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2008

Professor Eddie Kohler, Chair

The continuing frequency and seriousness of security incidents underlines the im-

portance of application security. We have developed Asbestos, a novel operating

system focusing on security that uses Asbestos labels to implement decentralized

information flow control (DIFC). Using DIFC Asbestos is able to track informa-

tion flow and contain the effects of malicious or poorly implemented applications.

This way, Asbestos applications can be made significantly more secure than appli-

cations built with conventional operating systems abstractions, since application

security is preserved even in cases where large parts of the applications are com-

promised. However, our development experience in Asbestos applications showed

that achieving Asbestos’s benefits was simply too difficult. We believe that an

important reason for this problem is Asbestos’s challenging programming model.

Based on our development experience for Asbestos, we attempt to improve its

programming model. We identify and investigate two important security policy

management problems that are critical for Asbestos development: security policy

specification and debugging.

First we present a policy description language that can be used to facilitate

17



application policy management. Using our policy language developers are able

to describe application policy in terms of pair-wise communication rules between

application components—an interface that is far more compact, intentionally

simple and human-friendly than Asbestos labels. Our policy language parser is

able to translate these high-level policy descriptions to equivalent Asbestos label

configurations. Furthermore, developers can use the policy language to describe

important run-time application properties that are required to automatically in-

stantiate the application policy using our policy launcher.

Secondly, we propose a new mechanism to facilitate security policy debugging

in Asbestos, namely debug domains. Performing system state inspection—e.g.

during debugging—would, if unchecked, leak information from a compartment

and violate information flow. Debug domains implement a decentralized debug-

ging primitive that adheres to the information flow policies enforced by Asbestos.

We evaluate our policy language by using it to describe policies from ma-

jor DIFC systems. We also use synthetic tests to evaluate the effectiveness and

performance overhead of debug domains. Our results suggest that our proposed

mechanisms are able to assist developers with reasonable overhead, can be bene-

ficial to DIFC systems other than Asbestos, and improve the DIFC programming

model.
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CHAPTER 1

Introduction

1.1 Security Challenges

Breaches of Web servers and other networked systems routinely divulge private

information on a massive scale [Lem05, New05, Tro06, Lem06]. Eliminating all

software flaws is extremely difficult, if not impossible, in practice, but systems can

be engineered to contain the effects of exploits. Ideally, we would like applications

to enforce the principle of least privilege [SS75], ensuring that each component

holds the minimum privilege required to accomplish its tasks. A system enforcing

least privilege policies would prevent a server acting for one principal from access-

ing data belonging to another principal. A full implementation of the principle of

least privilege is a daunting task: fully understanding and specifying the necessary

privilege requirements for each application is not much less complex than writing

the application itself and would require costly fine grained privilege management

mechanisms. Finding a useful way to define privilege is an important goal when

designing secure systems. We can achieve similar security improvements for a

large class of server applications by pursuing a weaker goal in the same direction,

data isolation.

Using application-level data isolation one can implement an instance of the

principle of least privilege: a policy preventing a server acting on a user’s behalf

from accessing data belonging to another user. Such a policy, implemented using

1



a small, trusted part of the application and enforced by the operating system,

would prevent whole classes of exploits, making servers much safer in practice.

For instance, a typical SQL injection attack would target a Web service with

badly formated and poorly checked query forms. Although each user is supposed

to have access to her own records, an attacker would use a carefully crafted input

that would change a legitimate database query into one that returns information

about every user in the system. A system providing data isolation would prevent

such an attack since user data would be strictly isolated according to application

policy enforced by the operating system. The server process handling the user

request would hold privilege to access only that particular user’s data and the

attempted attack would fail to steal information from the database.

Unfortunately, current operating systems provide little or no means to en-

force data isolation. Even the weaker goal of isolating Web services from one

another requires complex and error-prone abuse of primitives designed for other

purposes [Kro04]. Most servers thus retain the monolithic code design with many

privileges, allowing all server components to access all application data. As a

result of this highly insecure design, high-impact breaches continue to occur.

1.2 Example Applications

Bugs in the implementation of networked server applications can lead to serious

security problems. For instance, Web server bugs have lead to multiple security

incidents and it has been shown [Kro04] that isolating Web services is very hard.

The typical architecture of a Web server running on a conventional operating

system places the same amount of trust on all Web server components. Figure 1.1

is a simplified illustration of such a Web server with “monolithic” privilege man-

2



agement architecture: Web server components inside the dashed box run with

the same amount of privilege and without any data isolation restrictions between

them. Essentially, each of the components inside the dashed box is trusted.

DBDN
Bob

Alice
/profile.cgi

/profile.cgi

Figure 1.1: A simplified Web server architecture. All Web server components
inside the dashed box are equally trusted (i.e. run with the same amount of
privilege). All worker processes have equal access to the database—even if they
are serving different users.

When user Alice connects to the server through the network, the system net-

work daemon N forwards the connection to the Web server, where it is first

handled by a demux process D. The demux despatches the Alice’s request to

one of the Web server worker processes (i.e. server processes responsible for ex-

ecuting user requests) which acts on behalf of the Alice. Worker processes have

equal privilege (and therefore equal access to the database) and service requests

by sending results to the remote user, directly through the network daemon. Al-

though Alice’s worker acts on her behalf, there is no mechanism restricting it

from accessing any information from the database DB—including other users’

data. Therefore, the security of the system relies heavily on the assumption that

user workers are correctly implemented and not misbehaving.

When Alice’s worker, e.g. a CGI script such as “profile.cgi”, attempts to access

user data from the database DB, the server relies on the CGI script implementa-

tion to enforce data isolation/confidentiality and not reveal to Alice information

3



belonging to other users, such as Bob’s social security number.

SQL injection attack
... user=‘Alice’

DN
Bob

DB Bob’s SSN
Alice’s SSN

Alice’s SSN

1

2

3

Alice’s SSN

Alice
/profile.cgi

/profile.cgi

X

Figure 1.2: Bob exploits a vulnerability in the CGI script and issues a SQL
injection attack. The lack of data isolation allows the compromised CGI script
to leak Alice’s SSN to Bob. First Bob launches a SQL injection attack posing as
Alice (1), then the database responds to Bob’s worker process with Alice’s SSN
(2) which leaks it to Bob through the network (3).

By relying on correct implementation of the Web server components for data

isolation/confidentiality enforcement, the system’s security becomes vulnerable

to software bugs. For instance, if profile.cgi contains an exploitable bug and be-

comes compromised by a malicious user, it can be used to exercise full Web

server privilege in any way the attacker wants. Figure 1.2 presents a typical at-

tack scenario: user Bob knows that profile.cgi is poorly implemented (e.g. does

insufficient argument checking) and launches an SQL attack allowing him to steal

Alice’s social security number from the database—or even the whole database for

that matter.

Taking into account the recent innovations in the Web services development

model, such as Facebook [Faca] and OpenSocial [Ope], server-side security be-

comes even more fragile if user-uploadable application modules are supported—in

order to allow third-party developers to extend the functionality of the service.

In this model, server-side security is not only threatened by software bugs intro-

duced by otherwise trusted developers, but it also faces the threat of malicious

user-uploaded code. For example, most interesting services provided by third-
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party modules would require database access. In our example of Figure 1.1, if

Bob is able to run his own code on the server, it is no longer possible to rely on

the Web service implementation to enforce confidentiality, since Bob is consid-

ered untrusted. Nevertheless, it is necessary to ensure that Bob can not export

the whole database by uploading a carefully crafted third-party application. The

data isolation/confidentiality risks in this development model are particularly

concerning, since server-side security depends on the legitimacy of third-party

developers.

The security weaknesses presented in our Web server examples demonstrate

how conventional networked server applications can be vulnerable to attacks:

coarse-grained privilege management leads to overly privileged application mod-

ules and makes it very hard—if not impossible—to provide data isolation in the

presence of bugs. In the example of Figure 1.2, the demux may need to hold

certain types of privilege in order to perform its tasks. For example, if the demux

is responsible for authenticating incoming users, then certain amount of trust is

necessary to be placed on D. Similarly, the database is responsible for saving each

user’s private information and therefore is considered a trusted application com-

ponent with increased privilege requirements. Bob’s worker process though only

needs to access Bob’s data, as opposed to having privilege to access the whole

database. A mechanism ensuring that Bob’s worker (and for that matter all un-

trusted application components) holds limited database access privilege, allowing

it to serve Bob’s request without being able to access other user’s information,

would prevent Bob from stealing Alice’s social security number despite the exis-

tence of an exploitable software bug. Such a mechanism would also address the

security concerns in the example of third-party applications: a worker uploaded

by Bob would run on the server holding only a very limited set of privilege,

therefore preventing it from leaking data not belonging to Bob.
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In order to provide the desired level of data isolation and fine-grained privilege

management for server applications we must introduce new operating system

primitives [KEF05] enabling application developers to express and implement the

necessary security policies. To this end, we have designed and implemented the

Asbestos [EKV05] operating system, whose novel labeling mechanism provides

data isolation by implementing decentralized information flow control.

1.3 Decentralized Information Flow Control

Information flow control, or IFC, improves system security by enforcing manda-

tory policy restrictions. Bugs outside the trusted security kernel cannot violate

the information flow policy [Dep85, LS01, WMV03, KH84]. IFC’s label formal-

ism [Dep85, Den76, MR92] can implement data isolation security policies such

as secrecy protection (preventing protected information from escaping a system)

and integrity protection (preventing untrusted information from corrupting a sys-

tem). Classical centralized IFC concentrates all privilege—defined as the right to

relabel information independent of IFC policy—in the security kernel; all other

subsystems are completely constrained. For example, operating systems using

label variants to implement Mandatory Access Control (MAC) [LS01, WMV03]

provide strong, end-to-end security guarantees on application effects, but cen-

tralize policy management privilege. This has security benefits, but important

application policies often require a form of privilege. Consider a Web server that

responds to requests from different application-defined users. The part of the Web

server that parses user passwords is necessarily trusted by all users. However, we

might like to constrain other parts by a secrecy policy to prevent large-scale pass-

word theft. A truly centralized IFC system would seem to require either including

the password parser in the system-wide security kernel, or leaving user passwords
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unprotected.

Decentralized information flow control [ML00], or DIFC, addresses these prob-

lems by decentralizing the notion of privilege. No special privilege is required to

create a new security policy; code is privileged with respect to the policies it cre-

ates, while remaining constrained by other policies’ information flow rules. This

allows applications to split themselves into privileged and unprivileged pieces,

and brings the security benefits of information flow control to challenging appli-

cations like servers. While a conventionally-designed application occupies a single

security domain—a bug anywhere in the application can provide access to the

application’s full rights—the unprivileged parts of a DIFC application execute in

restricted domains, and are thus less security critical.

Asbestos labels give application developers fine-grained control over different

types of privilege, allowing them to significantly reduce the amount of privilege

held by each application component. Developers are able to express diverse secu-

rity policies using the fundamental compartment isolation primitive: applications

can create an arbitrary number of compartments and define the rules that govern

information flow between compartments as well as the rest of the system. These

policy rules are strictly enforced by the Asbestos kernel across all processes in

the system. This way, Asbestos is successful in providing data isolation, therefore

containing the effects of security breaches caused by a number of possible reasons

such as exploitable software bugs, misconfiguration, poor software design, and so

forth.

Figure 1.3 presents a Web server design that uses fine-grained privilege control

to address the data isolation/confidentiality problems of Figure 1.1. The worker

processes serving Alice and Bob’s requests are not considered trusted application

components and do not need to run with full Web server privileges. Instead, they
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/profile.cgi

Figure 1.3: Using DIFC a developer could remove the worker processes from the
set of trusted applications components. The demux and the database each hold
some amount/kind of trust still, but Bob’s worker belongs to Bob’s compart-
ment (marked with the diagonal line pattern), making it impossible to receive
information belonging to a user other than Bob. Furthermore, allow information
leaving Bob’s compartment (i.e. Bob’s worker) are marked (contaminated) with
his identity. Even if the CGI script is buggy, DIFC rules prevent Bob stealing
and leaking Alice’s information.

are executed inside each user’s private, isolated compartment (represented by

the horizontal and diagonal lines for Alice and Bob respectively), allowing them

to receive data belonging only to that particular user. Additionally, any data

leaving Bob’s compartment carry his identity (contamination) and only processes

with relevant privilege may receive it. For instance, using Asbestos DIFC, the

communication channel between Bob’s worker and the network daemon can be

setup so that it holds privilege to accept only Bob’s contamination. If Bob is

trying to leak data belonging to Alice over the network, his messages will get

rejected since the communication channel is not privileged to receive data carrying

Alice’s contamination. If the Web service allows third-party applications, the data

isolation guarantees provided for each user worker still stand: each worker can

only receive (and export) information it has been cleared to receive.

Asbestos labels allow developers to use information flow control to implement
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a variety of data isolation policies, like the one in our Web server example, in a

decentralized fashion that requires no special system privilege.

1.4 System Management Challenges

The decentralized nature of Asbestos gives developers great flexibility by allow-

ing them to manage application security policies without requiring any type of

special privilege. Unfortunately, this benefit comes at a price: the responsibility of

application security policy management is shifted to developers, involving policy

management tasks of critical importance for application security.

First, developers must define the correct application policy and write privi-

leged application code that will implement it by manipulating labels. Although

the threat to the security of the system posed by application bugs is significantly

lessened by data isolation, the correct behavior of individual application modules

relies on the correctness of the label manipulations performed by the application

developer.

Secondly, developers are responsible for debugging poorly defined and/or im-

plemented application security policies, given the constraints imposed by the

system’s strong data isolation guarantees.

In our experience with Asbestos’s system-based DIFC [VEK07], as well as

other DIFC systems [ML00, Mye99, ZBK06, KYB07], these security policy man-

agement problems are difficult enough to hamper adoption. Although operating

systems typically provide mechanisms that can be used to build system man-

agement tools, DIFC systems have failed to provide adequate support for such

DIFC-safe system management. In this thesis we focus on the two major cat-

egories of system management mechanisms that are particularly important for
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DIFC systems: security policy management and security policy debugging mech-

anisms.

Policy management mechanisms aim to provide users with means to express

and reason about security policies. DIFC policy management is critical for se-

curity and has been proven very difficult in real life. Labels concisely express

an application’s information flow constraints and privileges, but a label, which

combines the effects of all policies active on a process, is created piecemeal using

per-policy primitives like “transfer privilege” or “selectively mark a message as se-

cret.” These primitives are spread throughout the code—in a privilege-separated

application, most communication crosses security domains. This diffuses the in-

dividual policies and obscures their combined effect.

Over-simplified security policy management mechanisms may prove inade-

quate, with limited ability to express diverse application policies. Highly flexible,

fine grained security policy mechanisms may, on the other hand, prove to be error

prone and hard to use. Ideally, the system should provide effective policy spec-

ification and enforcement mechanisms that facilitate administrative tasks while

keeping the likelihood of misconfiguration minimal.

Security policy debugging mechanisms make it possible for users to collect

information regarding security policy-related matters. Such information may be

used to identify poor policy definition, implementation errors, malfunctioning

policies or just to keep track of system activity.

Let us consider a simple example demonstrating how information flow con-

trol complicates debugging. Most operating systems provide a way to enumerate

processes in the system, along with information about them. In UNIX-like oper-

ating systems this mechanism is used by the ps command, allowing users to get

information such as the name of the process, the user it belongs to, how many
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resources the process is using, etc. The ps command—or any equivalent—exposes

information about each process’s state to the calling user. Such information ex-

posure in Asbestos should not violate the information flow rules. This effectively

means that an Asbestos equivalent of the ps functionality needs to be imple-

mented in an information flow aware manner, ensuring that there is no explicit

information leakage and that implicit flows are minimized.

Message exchange rules enforced by trusted components (such as the oper-

ating system kernel) are used to prevent explicit information leakage. Implicit

information flow, or covert channels, leak information by modulating some ob-

servable property of the system (e.g. the number of processes belonging to a

user may leak an integer while the existence of a file conveys one bit). In the

ps example, any observable property of a process—including its existence—can

potentially leak information, if modulated appropriately. Just the simple task of

notifying a user that one of her processes exited, requires care in order to preserve

information flow rules.1

One can say that all system management tasks in Asbestos require special

care to ensure that information flow rules are not violated. For instance, a task

that has been proven daunting in practice is policy debugging. A mistake in pol-

icy definition or implementation often causes a process to have less privilege than

it needs. When it attempts to exercise this nonexistent privilege, the system sees

an attempted security policy violation indistinguishable from an actual exploit.

Debugging such a problem requires extracting information from the process, but

the bug itself prevents the process from exporting this information: all process

state is subject to information flow rules. The mere existence of the bug is subject

to information flow rules and is concealed by the kernel. DIFC systems’ strong in-

1Actually, we strongly believe that a leak-free equivalent of the ps command may be impos-
sible in Asbestos, due to both explicit and implicit information flows.
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formation flow guarantees limit the ability to collect system information required

to perform the system management tasks required to solve such bugs. Increas-

ing system visibility for users and developers would violate the information flow

constraints the system is trying to enforce. Likewise, Asbestos’s strong isolation

guarantees affect system management significantly. In Asbestos we aim to expose

information required by system management tools while preserving the system’s

security guarantees: information flow policies should not be violated.

Policy debugging requires system state inspection and exposure. and the rel-

evant mechanisms should allow users to access only information they are cleared

to receive. Additionally, exposure to such information (e.g. sending debugging

information to the calling user) should be tracked by the information flow con-

trol system based on the policies in effect, just like any other information flow-

ing through the system. Exposure of such information involves privilege: users

should have access only to system state that are cleared to inspect and debug-

ging information should escape a DIFC compartment if and only if an adequately

privileged process removes all relevant contamination—i.e., declassifies the infor-

mation. These privilege requirements necessary for DIFC-safe policy debugging

can be better addressed by new mechanisms able to systematically model such

types of privilege—e.g., debugging privilege. To preserve the decentralized nature

of DIFC, this new type of privilege should also be managed in a decentralized

fashion, allowing each user to create and use it without requiring any kind special

system privileges.

Problems such as security policy management and debugging are two impor-

tant instances of the greater issue we have identified with DIFC systems: current

DIFC systems provide very limited—if any—mechanisms to support system man-

agement tasks. Yet system management mechanisms are essential for achieving

12



the reasonable, user-friendly programming model necessary for wider DIFC adop-

tion.

1.5 Goals and Contributions

When designing Asbestos, our higher level goal was to make computing more

secure by providing mechanisms that contain the effects of application bugs.

Although Asbestos labels are a primitive capable of serving this goal, developing

for Asbestos we observed that it exposes a programming model that makes it

particularly unappealing. Despite all the benefits of DIFC, a DIFC application is

effective only to the extent that application developers are able to use and take

advantage of the mechanisms provided.

Our goal is to improve the DIFC programming model and make it easier to use,

reason about and adopt. We believe that by addressing some of the pressing system

management issues we can significantly improve the programming model. We

investigate the challenges related to two important system management problems:

security policy and system state management. Our contributions include two

mechanisms incorporated to Asbestos to make privilege-separated applications

easier to design, build, and debug. Although our work has focused primarily on

Asbestos, we believe that the solutions we propose have applications to other

DIFC systems as well.

First, a new policy description language defines label-based security policies

via allowed process communication patterns (“A can communicate with B, but

not C”). This concentrates policy specification into one place, making policies eas-

ier to write and to reason about. A parser translates the policy into labels, and

optionally launches applications with the labels already in place. The language
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can specify even complex application requirements, such as Asbestos event pro-

cesses (a process abstraction that combines isolation and low memory overhead).

Although communication patterns are not perfect abstractions for information

flow—for example, non-transitive communication patterns have no mandatorily-

enforced Asbestos equivalents—they improve programmability for our target ap-

plications, and provide a useful starting point for further research.

Second, debugging is supported by debug domains, which safely extend the

notion of privilege to include application debugging. When a debug domain is

given privilege for a given policy, problems involving that policy may be for-

warded to a separate debugging process, no matter where those problems occur.

Debug domains combine information flow safety—debug domains do not expose

information associated processes are not allowed to see—with usability.

1.6 Outline

The remainder of this thesis is organized as follows.

Chapter 2 presents related work while Chapter 3 presents the Asbestos op-

erating system, including basic goals and design principles , the Asbestos la-

beling mechanism and its use in implementing DIFC (Section 3.1), as well as

examples, applications and lessons learned from developing for Asbestos (Sec-

tions 3.2 and 3.5). Chapter 4 introduces the requirements for DIFC-safe policy

management and debugging mechanisms. Chapter 5 presents the policy descrip-

tion language and the relevant tools we have proposed and implemented in order

to facilitate DIFC policy management. Chapter 6 presents Asbestos debugging

challenges as well as the design and implementation of the debug domain prim-

itive used to facilitate debugging and other system state management tasks. Fi-
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nally, Chapter 7 summarizes this thesis, presents some concluding remarks and

potential directions for future work.

Appendix A presents full policy descriptions of examples from Asbestos, HiS-

tar and Jif—including the full AWS policy—using our policy language.
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CHAPTER 2

Related Work

Most MAC systems are geared towards military specifications, which require

labels to specify at least 16 hierarchical sensitivity classifications and 64 non-

hierarchical categories [Dep85]. This label format severely limits what kinds of

policies can be expressed. The fixed number of classifications and categories must

be centrally allocated and assigned by a security administrator, preventing ap-

plications from crafting their own policies with labels alone. Thus, MAC systems

typically combine labels with a separate discretionary access control mechanism.

Ordinary Unix-style users and groups might enforce access control within the

secret, nuclear level. This structure allows users to have limited control over pol-

icy management using the discretionary access control mechanism available to

them. However, these discretionary mechanisms are not adequate to implement

more complex server policies, and application developers may not perform policy

management and debugging tasks without holding special system privilege.

Variants of mainstream operating systems have used label variants to imple-

ment MAC. SELinux [LS01] and TrustedBSD [WMV03] are based on implemen-

tations of the Flask MAC architecture [SSL99], which employs a special kernel

component called the Security Server (SS), and require administrator privilege to

perform policy management tasks. The SELinux Policy Server [MBM06] has tried

to correct this shortcoming by adding a meta-policy; the policy specifies which

subjects can modify the policy in what way. However, the security administrator
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must still anticipate and approve of the policy structure of every individual ap-

plication. Furthermore, policies are defined in multiple files, therefore increasing

the dispersion of trusted code. These restrictions prevent applications from using

MAC primitives as security tools without the cooperation and approval of the

security administrator.

Legacy systems suffer from similar policy management problems: the idea of

dynamically adjusting labels to track potential information flow dates back to the

High-Water-Mark security model [Lan81] of the ADEPT-50 in the late 1960s. Nu-

merous systems have incorporated such mechanisms, including IX [MR92] and

LOMAC [Fra00]. The ORAC model [MMN90] supported the idea of individ-

ual originators placing accumulating restrictions on data, somewhat like creating

tags, except that data could still only be declassified by users with the privileged

Downgrader role. This effectively means that managing policies and declassifying

debugging information to users requires some kind of special system privilege.

Asbestos and similar research operating systems—such as HiStar [ZBK06] and

Flume [KYB07]—that implement DIFC using Asbestos labels, allow any process

to dynamically create non-hierarchical compartments. An application can manage

arbitrary security policies involving compartments it creates, without requiring

any type of system privilege. This makes Asbestos’s decentralized MAC an effec-

tive tool for application and administrative use. Nevertheless, the strict isolation

enforced by DIFC policies defined by developers makes policy correctness critical

and introduces new system management challenges such as those addressed in

this thesis.

Debugging in SELinux and TrustedBSD is performed mainly through priv-

ileged access to special system files (such as sysfs files) and the console. This

is very different from the decentralized IFC implemented by Asbestos, where
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untrusted application developers may create and manage their own set of com-

partments and implement policies that will have to be enforced (by the kernel)

within the context of the application. The decentralized privilege management

model of Asbestos contrasts the use of such centralized, highly privileged system

state management mechanisms. By design, DIFC systems have no “super-user”

privilege that can override security policies and be exercised to perform debugging

in violation. Application defined policies are always enforced.

Mandatory access control can also be achieved with unmodified traditional

operating systems through virtual machines [Gol73, KZB90]. For example, the

NetTop project [VMw01] uses VMware for multi-level security. Virtual machines

have two principal limitations, however: performance [KC03, WSG02] and coarse

granularity. One of the goals of Asbestos is to allow fine-grained information flow

control, so that a single process can handle differently labeled data. To imple-

ment a similar structure with virtual machines would require a separate instance

of the operating system for each label type. This type of strict, coarse-grained

data isolation precludes the safe exchange of private data between mutually un-

trusted programs, possibly including debugging information. Additionally, it is

very difficult to implement complex policies using VMs (e.g., policies that sup-

port any type of IFC-safe data sharing), and—unlike DIFC—policy management

requirements are relatively simple.

Additionally, due to the large number of separate virtual machine instances,

system management tasks in such a setup would be extremely difficult and costly.

The system management challenges we faced while developing Asbestos ap-

plications such as the Asbestos Web server [VEK07] were the main motivation

for our work. HiStar [ZBK06] mitigates some programming issues by shifting the

responsibility for most process label changes to the process itself. This lets HiStar
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safely report most errors to the calling application. However, errors are still gener-

ated by widely separated application fragments, and policy specification manage-

ment remains a challenge. Although HiStar implements an untrusted, user-level

Unix emulation layer, applications running on this layer are subject to Unix-type

security policies; introducing more complex policies requires interacting with HiS-

tar abstractions. For instance, running the ClamAV anti-virus application in a

HiStar isolated domain involves a special wrapper/launcher that implements the

necessary label initialization. Our work attempts to provide a general solution

to this wrapper/launcher problem, allowing developers to express even complex

security policies at a higher level.

The Flume system [KYB07] implements decentralized IFC for Linux using a

reference monitor. Flume abstractions go beyond HiStar’s in supporting manage-

ment. The promise of the system is to provide IFC guarantees for Linux applica-

tions without requiring extensive changes to application code. A wiki application

using Flume was implemented using a separate launcher application module for

policy initialization. A policy language like the one we present could replace such

purpose-built launchers.

Jif [ML00] and JFlow [Mye99] provide language level information flow con-

trol by annotating (labeling) source code at the granularity of variables and

functions. These systems allow developers to express very fine-grained policies

through widespread code annotations, whereas Asbestos labels enforce policies

at the process level. Our policy framework uses communication-based annota-

tions, as opposed to label annotations, to define policies in one piece, minimizing

the dispersion of trusted policy implementation code. Jif policy checking and de-

bugging is largely performed statically at compile time, and the generated code is

guaranteed to comply with the policy. This simplifies debugging. However, more
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complex server-type applications, such as those in the more recent Jif projects

SIF [CVM07] and the Swift framework [CLM07], involve dynamic decisions by

design, and SIF and Swift allow for the dynamic creation of objects that are la-

beled appropriately to adhere to the application policy. Debugging the resulting

runtime behavior would seem to face similar management challenges, and could

benefit from ideas like our debug domains.

Policy management and debugging challenges become particularly concerning

when unprivileged third-party users attempt to contribute code to server appli-

cations. To avoid the consequences of any breach in a server application, existing

attempts at server extensibility expose only a fraction of the server’s resources

and private data. Livejournal [liv], for example, allows journal authors to upload

sandboxed PHP renderers for their journals, but each renderer can read only a

limited set of user data accessible through a strict API and has very limited write

access. Similarly, Facebook [Faca] supports user-uploadable, third-party applica-

tions, written using a very restrictive API. In order to protect system security,

third-party developers have very limited freedom to define interesting custom sub-

policies but they are able to expose any kind of system information they have

access to, with no additional security restrictions, since they API is supposed to

restrict their access to private information. Recent security incidents [Facb, Facc]

demonstrate that limiting third-party developers by means of narrow APIs is

difficult, and the slightest mistake may compromise the security of the system.

Seeing that the requirement for strong server security contrasts the increasing

demand for more powerful and diverse third-party applications, we expect that

more sophisticated security mechanisms, such as DIFC, will become more popular

with Web service providers. If Web application developers (both trusted and un-

trusted) need to use DIFC mechanisms, the need for more elaborate, DIFC-aware

policy management and debugging tools will become pressing.
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Furthermore, several earlier systems have used confinement to safely execute

untrusted programs. Web browsers and active network systems like ANT [Wet99]

execute untrusted Java [GJS05] programs by running them in a restricted vir-

tual machine. Browsers confine the untrusted programs by restricting the disk

and network access of the Java virtual machine. The ANT execution environ-

ment further restricts untrusted code by limiting the Java language as well. An

untrusted third-party server extension must be able to read, write and process

data as long as it does not export it off the server in a way that violates the

information-flow rules. VM-based solutions for running untrusted Web applica-

tions pose policy management and debugging problems similar to those of regular

VMs: coarse granularity leaves little policy management flexibility, while at the

same time a virtual machine relinquishes all control over data that it exports to

other VMs for processing by another user’s untrusted module, making it hard to

impose any type of flow control on debugging information.

Almost all Web srevices use a database back-end to store application data.

Existing database systems [LM02, RB04] also support per-row security labels

based on users. Such database labels though have semantic meaning only within

the context of the database application and do not have a close integration with

operating system labels. This greatly simplifies the design of the database row

labeling mechanism and makes policy management a lot easier. For instance,

Oracle security labels [Ora07] associate one clearance label with each user and

one secrecy label per row. This simplified security label mechanism is centrally

managed by a database/security administrator either through graphical tools or

by using a basic scripting language. Asbestos labels though are a decentralized

and far more versatile security mechanism that is closely integrated with the

operating system, requiring specialized policy management tools, such as our

policy language.
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CHAPTER 3

The Asbestos Operating System

We investigate the DIFC policy management and debugging challenges in the

context of the Asbestos operating system. We present an overview of the Asbestos

operating system, its goals and design. This will make the challenges we have

addressed and our proposed solutions clearer and more understandable.

The Asbestos operating system can provide better security by containing the

effects of exploitable software bugs. In a nutshell, Asbestos aims to achieve a

goal that is very hard—if not impossible—to achieve on a conventional operat-

ing system: Asbestos should support efficient, unprivileged, and large-scale server

applications whose application-defined users are isolated from one another by the

operating system, according to application policy. A large scale server application

responds to user requests—usually coming from the network. These server ap-

plications, such as Web servers, support large number of dynamically changing

application-defined users that request service at random times. In order to con-

tain the effects of software bugs and remedy security issues such as the ones that

have lead to huge data leaks in the past [Lem05, New05, Tro06, Lem06], Asbestos

server applications make use of Asbestos’s mechanisms to provide strict user data

isolation. A server process acting on behalf of an application-defined user (e.g.

user of a particular Web service that does not necessarily correspond to a system

user) cannot have access to another user’s private data.

Given the diverse requirements of each server application, Asbestos allows
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developers to define and implement such security policies without requiring any

special type of system privilege. These application-defined policies are strictly

enforced by the operating system. This way, applications are responsible to define

the necessary policies, but they are not trusted to enforce them, since only a

minimal set of application components are considered trusted by the kernel. The

enforcement of the policies is assigned to the trusted Asbestos kernel, that ensures

that the policy is in effect even if the untrusted parts of the application have been

compromised. Of course, the system mechanism providing this added security

must incur reasonable overhead, that does not affect application efficiency.

The contributions of Asbestos are twofold. First, we use Asbestos labels to

track information flowing through the system. Asbestos labels are used to track

what kinds of information an entity has already received and determine the kinds

of information it may receive, therefore specifying the ways information may flow

in the system. Furthermore, Asbestos labels can track privilege with respect to

categories of information. Labels are able to enumerate positive rights like tradi-

tional discretionary capability systems, but unlike traditional capability system,

they are also able to track and control the flow of information. Privilege man-

agement is performed at the label level and each process holds privilege for any

new category of information it creates. This decentralized information flow control

(DIFC) mechanism makes Asbestos labels a powerful mechanism able to express

diverse policies including capability-like policies, traditional multi-level security

(MLS) as well as application-specific isolation policies.

Second, Asbestos’s event process (EP) abstraction is used to replace mono-

lithic server processes and efficiently implement isolated, per-user server process

instances. A monolithic server process that handles private user data, would either

have to hold excessive privilege with respect to all users, or quickly become overly
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contaminated (and unusable) by accessing multiple user’s information. Event pro-

cesses solve this problem securely, efficiently and with minimal resource overhead.

Each server process that uses EPs keeps private state for each user, but isolates

that state so that a compromised process may only expose one user’s data.

Asbestos [VEK07] is a message-passing operating system; its IPC mechanism

resembles that of micro-kernels such as Mach. The fundamental IPC primitive

is a message sent from one process to an Asbestos communication end-point,

called a port. Applications are able to construct and tear down an arbitrary

number of isolation domains, which we refer to as compartments. Most resources

in Asbestos, including ports and compartments, are represented by a unique1 61-

bit identifier—called tags—generated by the kernel. To the kernel tags are opaque;

applications give them semantic meaning. A process may create an arbitrary

number of compartments and ports by requesting from the kernel a new, unique

tag for each of them. The allocating process gains privilege over that tag, meaning

that the process can freely manipulate information flow for that tag.

3.1 Asbestos Labels

Asbestos labels are used to control and track information flow, so as to provide

isolation of user data according to application policies and prevent data leaks

during communication. An Asbestos label is a function mapping between tags

and sensitivity levels, each representing a process’s amount of privilege (or con-

tamination level) with respect to the compartment represented by the tag. Each

process has a tracking label and a clearance label. The tracking label TP of pro-

cess P keeps track of the compartments whose information has been exposed to

1Each identifier is generated upon request and uniqueness is ensured through the use of a
Blowfish cryptographic hash.
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P , either directly or indirectly. We often refer to this exposure as the contamina-

tion that the process has received. The clearance label CQ of process Q governs

the ability of the process to receive messages with respect to each compartment.

The clearance label specifies the kind of contamination the process is allowed to

receive.

Asbestos ports also carry labels. Port labels specify the amount of contamina-

tion (or privilege) a message destined to the port may carry, therefore resembling

clearance labels. Processes supply an initial port label when creating a port; most

often this is⊤ = {3}, which adds no restrictions relative to the process’s clearance

label, but it can be {2} or anything else. Port labels augment the expressiveness

of Asbestos labels, making it possible to implement more diverse policies.2

There are five levels a tag may be at inside a label. Privilege is represented

by the special level ⋆. For instance, when a process P allocates a new tag b it

acquires privilege with respect to that tag, and its tracking label would reflect

this by including the tag-level pair {b ⋆}. This allows P to declassify information

with respect to the compartment represented by b, as well as pass this privilege

on to any other process it can communicate with. The other levels allow Asbestos

to combine secrecy and integrity tracking into a single name-space (more usually,

systems track secrecy and integrity using separate labels [MR92, KYB07]). These

levels, written (in increasing order) 0, 1, 2 and 3, have the meanings shown in

Table 3.1. Notice that ⋆ < 0 (< 1 < 2 < 3).

A label combines explicit levels for zero or more tags with a default level

that applies to all tags not otherwise mentioned. The default level for a process’

tracking label is 1, while the default for a clearance label is 2. Level 3, on the other

hand, represents contamination with respect to a tag in a label. In a clearance

2For instance, port labels are necessary to implement capabilities using Asbestos labels.
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Level Meaning

⋆ Privilege for the tag
0 High integrity for the tag
1 Default tracking level,

default integrity and secrecy—no restriction for the tag
2 Default clearance level, low integrity (used in taint tracking)
3 High secrecy (contamination) for the tag

Table 3.1: Asbestos label levels and common uses

label, 3 represents the fact the process is cleared to receive the corresponding

contamination. Note that ⋆ < 1 < 3 and that the default level for a clearance

label does not allow contamination (i.e. 2 < 3).

We represent a label as a set of tag-level pairs followed by the default level

for that label. For instance, the label L = {a0, b ⋆, c3,1} specifies L(a) = 0,

L(b) = ⋆, and L(c) = 3, while for any other tag t, L(t) = 1, or:

L(t) =











































0 if t = a,

⋆ if t = b,

3 if t = c,

1 otherwise.

Assuming that label L is the tracking label of process P (also denoted by TP ),

L(b) = ⋆ signifies that P privileged with respect to tag b (and the compartment,

port or other resource b represents). Similarly, L(a) = 0 means that process P

is high integrity with respect to a (it has been modified and/or affected only

by privileged and/or high integrity entities with respect to a), while L(c) = 3

signifies that P is marked high secrecy with respect to c (i.e. P has been exposed

to information carrying contamination with respect to the c compartment). Notice

that if L was process P ’s clearance label (also denoted by CP ) the meaning of
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the levels would be analogous, only referring to P ’s security clearance—i.e. P ’s

ability to receive information at the relevant level. For instance, L(c) = 3 at P ’s

clearance label would mean that P is cleared to receive messages marked as high

secrecy with respect to c (i.e. contaminated with c), while L(a) = 0 would mean

that P may only receive messages whose sender is high integrity with respect to

a.

3.1.1 Communication Rules

In Asbestos label terms, in order for P to send a message to Q, the kernel requires

that P ’s tracking label is “less than or equal” to Q’s clearance label, essentially

requiring that for each tag t in the system TP (t) is less than or equal to CQ(t):

TP ⊑ CQ (3.1)

where

TP ⊑ CQ iff ∀t : TP (t) ≤ CQ(t). (3.2)

This fundamental rule, which is enforced by the Asbestos kernel during mes-

sage exchange, ensures that the receiver has clearance to receive the contami-

nation carried by the message. If this label check fails, the message is silently

dropped by the kernel. When the message is delivered to Q, the kernel auto-

matically updates Q’s tracking label to reflect information flowing from P to Q.

This is done by setting Q’s tracking label to the least-upper-bound of the two

processes’ tracking labels:

TQ ← TQ ⊔TP (3.3)

The least upper bound operator works by taking the highest level in either of the
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System labels (maintained by the kernel)
TP Process P ’s tracking label.
CP Process P ’s clearance label. The system maintains the invariant that TP ⊑ CP .
PCp Port p’s port clearance label. May be set arbitrarily by p’s owning process.

Discretionary labels (optionally set by the process sending a message)
T+ Increases the message’s effective tracking label. Used when a message contains data at

a higher secrecy level than the process itself. Commonly used by privileged processes;
defaults to {⋆}, which implies no increase.

T− Decreases the receiving process’s tracking label. This represents declassification and/or
privilege transfer. Defaults to {3}, which implies no decrease; setting it to another value
requires privilege for the affected tags.

C+ Increases the receiving process’s clearance label, granting it clearance to further raise
its tracking label. Defaults to {⋆}, which implies no increase; setting it to another value
requires privilege for the affected tags.

V Declares an upper bound on the sender’s tracking label. This might represent the privi-
lege the sender intends to use for this operation. The kernel verifies V ⊑ TP , then passes
it to the receiver along with the message. Defaults to {3}, which confers no information.

Figure 3.1: Notation and description for Asbestos system and discretionary labels.

labels for each tag:

∀t,TQ(t) = max(TP (t),TQ(t)) (3.4)

For instance, let us assume that P ’s send and clearance labels are TP =

{a3, b ⋆,1} and CP = {a3, b3,2} respectively, while Q’s are TQ = {b3,1} and

CQ = {a3, b3,2}. In this example P is contaminated with {a3} but is able to

send a message to Q, since CQ(a) = 3 denoting that Q holds the necessary clear-

ance with respect to a. The Asbestos kernel enforces transitive contamination to

track information flow. Any message sent from P to Q carries P ’s contamination

and, once received, contaminates Q accordingly. In our example, P is contami-

nated with {a3} and Q has clearance to receive that contamination. After Q has

received a message from P , its tracking label will become TQ = {b3, a3,1}.

Apart from the sender’s contamination, Asbestos messages may carry any of

the four optional types of discretionary labels, T+, T− , C+ and V, described in

Figure 3.1. The four optional discretionary message labels are key in achieving

Asbestos’s flexibility in decentralized policy implementation and privilege man-
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agement. Through the use of discretionary labels processes are able to transfer

contamination, exercise and transfer privilege according to application policy.

The T+ discretionary label is used to increase the contamination carried by

the message with respect to a set of tags. Notice that increasing contamination

makes the system more restrictive and thus the use of T+ requires no privilege

with respect with the tags involved. In the presence of a T+ message label, the

effective tracking label (TE) defining the contamination carried by a message

sent from P to Q is the least-upper-bound of the contaminate label and the P ’s

tracking label:

TE ← T+ ⊔TP (3.5)

and similarly to rule 3.3, Q’s tracking label would be set to:

TQ ← TQ ⊔TE (3.6)

Notice that rule 3.7 does not take into account the privilege already held by

the receiver: if TQ(t) = ⋆, while TE(t) > ⋆ then the strict enforcement of the

least-upper-bound operator will clobber Q’s privilege with respect to t. Given

that in Asbestos processes that have privilege with respect to a tag are immune

to contamination from that tag (i.e. privilege is maintained), we need to adjust

rule 3.6 to “preserve stars”:

TQ ← TQ ⊔ (TE ⊓T⋆
Q) (3.7)

where3:

(TE ⊓T⋆
Q)(t) =











⋆ if TQ(t) = ⋆,

TE(t) otherwise.

(3.8)

3This implies that T⋆
Q = {t1 ⋆, t2 ⋆, . . . , tN ⋆,3} and for all i = 1, 2, . . . , N TQ(ti) = ⋆.
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⋆,0,1,2,3 Label levels, in increasing order
TP , CP Process P ’s label and clearance

L1 ⊑ L2 Label comparison:
true iff ∀h, L1(t) ≤ L2(t)

L1 ⊔ L2 Least-upper-bound label:
(L1 ⊔ L2)(t) = max(L1(t), L2(t))

L1 ⊓ L2 Greatest-lower-bound label:
(L1 ⊓ L2)(t) = min(L1(t), L2(t))

send(port, data,T+,T− ,

V,C+)
Let P be the sending process
Let Q be the process with receive rights for port

Let TE = TP ⊔T+

Requirements:

(1) TE ⊑ (CQ ⊔C+) ⊓V ⊓PCport

(2) If T− (t) < 3, then TP (t) = ⋆

(3) If C+(t) > ⋆, then TP (t) = ⋆

(4) C+ ⊑ PCport

Effects:

Grant T− and contaminate
with TE , but preserve TQ’s ⋆ tags

TQ ← (TQ ⊓T− ) ⊔ (TE ⊓T⋆
Q)

CQ ← CQ ⊔C+

Figure 3.2: Summary of basic Asbestos label operations

The T− discretionary label is used to grant privilege to the recipient of the

message by lowering the level of the receiver’s label with respect to certain tags

(greatest-lower-bound operator), while the C+ label is used to grant clearance

to the receiver, by raising its clearance label. Exercising the T− and C+ labels

requires privilege with respect to the relevant tags. Given the T− label, the

receiver contamination rule 3.7 becomes:

TQ ← (TQ ⊓T−) ⊔ (TE ⊓T⋆
Q) (3.9)

while the C+ discretionary label alters the the global communication rule 3.1 as

follows:

TE ⊑ (CQ ⊔C+) (3.10)

The V label is used by the sender in order to explicitly state the privilege she

wants to exercise during the message exchange, so as to prevent inadvertent use

of ambient authority (the “confused deputy” problem [Har88]). During message

exchange the V label is checked so that the sender does not attempt exercise

more privilege that she currently holds. This is ensured by applying the greatest-
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lower-bound operator between the right-hand side of rule 3.10 and the V label:

TE ⊑ (CQ ⊔C+) ⊓V (3.11)

In order for the communication rules to be complete, we also need to take

into account the destination port label. The port label doesn’t not affect receiver

contamination, but it does takes part in the rule determining whether the mes-

sage can go through or not, by requiring that the message does not carry more

contamination than the port label is willing to permit. Consequently, rule 3.11

becomes:

TE ⊑ (CQ ⊔C+) ⊓ V ⊓PCport (3.12)

Figure 3.2 summarizes the basic Asbestos label operations, including the in-

formation flow checks for sending a messages and the updates to the sender’s

labels.

3.2 Example

With most of the mechanisms for Asbestos labels in place, we present an example

with four processes to make labels more concrete. The example, shown in Fig-

ure 3.3, involves a trusted multi-user file server, shells for users A and B, and a

terminal to which user A is logged in. The application policy is that no process

but user A’s terminal can export user A’s data. For the purposes of this example,

we assume that process labels are assigned out of band.

Each user needs a security compartment, so we assign each user a tag. In

this instance, a tag is used to represent a compartment and each user’s data are

isolated in a separate compartment; we represent user A’s compartment through
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FS:
File Server

Users A and B

SA: Shell
User A

SB : Shell
User B

XA: Terminal
User A

TSA
= {a3,1}

CSA
= {a3,2}

TSB
= {b3,1}

CSB
= {b3,2}

TXA
= {a3,1}

CXA
= {a3,2}

TB 6⊑ CXA

({b3,1} 6⊑ {a3,2})

TA ⊑ CXA

Figure 3.3: Simplified process communication with labels. The file server is
trusted.

tag a. The next step is to differentiate processes that have seen A’s private data

from those that have not. Since we want to use the information flow capabilities

of Asbestos labels, we need to use a level higher than level 1, the default level for

send labels. (With level 1 or lower, the contamination rule would not propagate

the information flow.)

The default behavior for this policy is to deny communication, so the labels

used to implement the policy should prevent communication if the destination

process has a default clearance label. Therefore, the only viable contamination

level for a process that has seen A’s data is {a3}; a contamination of {a2}

would allow communication with default receive labels. As a result of using 3 for

contamination, the clearance labels of processes that should be able to receive

A’s data have to be changed. Raising clearance labels, or granting clearance for a

particular kind of contamination makes the system more permissive, so it requires

special privilege: processes are not free to raise their clearance labelsarbitrarily.

Figure 3.3 shows the resulting system. The shell processes SA and SB are con-

taminated with a and b (that is, TSA
(a) = 3 and TSB

(b) = 3), and their clearance

labels allow them to receive the data of their respective users. Any processes they
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create or are able to communicate with will have the same characteristics. User

A’s terminal, XA, has the same labels as SA. SA can send messages to XA, since

TSA
⊑ CXA

, but SB cannot, since TSB
(b) > CXA

(b), and neither can any other

process that has seen B’s data.

3.3 Event Processes

Asbestos services often expect to respond to many differently-contaminated re-

quests over time. Server processes that handle multiple users’ data—each with a

different type of contamination—present a challenging information flow problem:

any such server implemented as a single process would soon become contaminated

with multiple users’ tags. The server could then spread this over-contamination

and further complicate the problem. Eventually, the server process will become

unable to perform its tasks and essentially unusable.

We could address this problem by granting the server process privilege with

respect to all user private compartments, therefore making the server immune to

all user contamination. This would render the server process a trusted application

component exposed to all kinds of potential attacks. Any compromise of the

server process and every exploitable bug would immediately allow the attacker

access to all private user data. Of course this solution is not acceptable: Asbestos

aims to remedy exactly this kind of problem caused by overly privileged server

components.

Another potential solution could be to fork a separate, dedicated process for

each user being serviced by the system. Although this solution would meet our

isolation requirements, it is obvious that it poses a resource challenge: a service

may need to serve tens or even hundreds of thousands of users simultaneously.
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1 while (1) {
2 event = get next event();
3 user = lookup user(event);
4 if (not seen(user))
5 user.state = create state();
6 process event(event, user);
7 }

Figure 3.4: Event loop for a typical event-driven server application

The resource overhead (memory consumption, kernel data structures, context

switching, etc.) of maintaining a separate server process for such large numbers

of users renders this solution inadequate.

In order to avoid the problem of server process over-contamination in an

efficient manner Asbestos provides the event process (EP) abstraction. Event

processes are limited, fast forks of a process that have their own labels and address

space.

Event processes were inspired by a simple observation of how many event-

driven servers [PDZ99, BCZ03, Kro04] operate by using a main event dispatch

loop, shown in Figure 3.4.

In this event-driven server model, user state is stored in data structures and

gets initialized/recalled whenever a new/returning user requests service. Based

on this observation, event processes implement a similar event loop that forks

memory and label state for each new user and recalls forked state for returning

users. Forks are stored by the kernel in efficient data structures (memory “diffs”

and “copy-on-write” labels). When a returning user requests service, the kernel

applies the user’s memory “diff” to a base process’s memory state and switches

the server process labels to those that correspond to the user in question.
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1 ep checkpoint(&msg);
2 if (!state.initialized) {
3 initialize state(state);
4 state.reply = new port();
5 }
6 process msg(msg, state);
7 ep yield();

Figure 3.5: Typical event loop of an Asbestos server application using event pro-
cesses.

Figure 3.5 presents the same server software architecture implemented with

Asbestos event processes. Using the ep checkpoint system call on line 1 the

process enables event process and enters an event loop, waiting for the next

message that will fork a new EP. If the new event is for an existing user, Asbestos

restores the event process corresponding to that user (applies memory “diff” to

the base process page tables and restores the appropriate labels). If a new user

requests service, then the state variable will not have been restored once the loops

is entered (line 2) and the subsequent code will initialize the state data structure

and the communication port for the new user (lines 3 and 4). Each EP runs until

it relinquishes control with the ep yield (line 7) that completes the EP-loop

iteration.

Using event processes to develop large server applications, we observed good

performance, scalability up to 150,000 of simultaneous users, and efficient resource

utilization on the order of a few pages of memory per user EP.
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3.4 Asbestos Persistence

Most useful Web services use persistent data that must persist even if the server

reboots and all volatile storage is cleared.

A persistent store must uphold the system’s information-flow invariants, even

across reboots. For example, if a contaminated process writes contaminated data

to the hard disk and then later, another process reads the file, the reading process

must also become contaminated. Furthermore, the data store must also preserve

privilege, lest it be impossible for applications to extract labeled data after a

reboot. Systems such as EROS [SSF99] and HiStar [ZBK06] avoid this problem

by introducing a single-level store: reboot returns to a checkpointed system state,

and a process’s handles and capabilities are stored along with its virtual memory.

However, conventional file systems with non-persistent memory are more familiar

to most programmers and may simplify the process of recovering from application

crashes without losing associated tag state.

3.4.1 File System Semantics

Each file in the Asbestos file system has a contamination label fC and a clearance

label Vf . These are analogous to the Asbestos send and clearance process labels.

Like a process’s label, a file’s contamination label represents the contamination of

the file’s data. The file system contaminates any process that reads from the file

f with its label fC. Similarly, a file’s clearance label is like a process’s clearance

label; a process P with send label TP may only write to a file f if TP ⊑ Vf .

The file system label rules are intuitively similar to the process label rules.

If a file contains contaminated data, a process that reads it should collect the

contamination. Furthermore, a writer should only be allowed to write to a file
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Diary

Web Blog

Directory: Alice/

...

Size: 5120

Data blocks
...

File: Diary File data blocks

Data blocks
...

File data blocks

Size:2340

Diary contents
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File: Web Blog

T = {1}

C = {a *, 2}

T = {1}

C= {a *, 2}

C = {a *, 2}

T = {a 3, 1}

Figure 3.6: File and directory labels. User Alice owns a publicly readable directory
Alice, a publicly readable file Web Blog, and a private file Diary. Only processes
with privilege {a, ∗} may modify her files.

if the file’s clearance label allows it. Clearance labels let users control which

processes may modify a file. Directories have labels and clearances exactly like

regular files. For example, in Figure 3.4.1, user Alice owns the tag a and creates a

file diary with clearance label Vdiary = {a ⋆,1}, then the only processes that may

modify diary are uncontaminated processes to which Alice grants the privilege

{a ⋆}. Figure 3.7 summarizes the label rules for file system operations.

Unlike process labels, file labels are immutable. Files may not be dynamically

contaminated or granted privilege, and a file meant to hold a secret must be

tagged appropriately when it is created. The immutable label and clearance are

supplied at creation time; the file system ensures that the new file is at least as

contaminated as the creating process (TP ⊑ fC), maintaining the information-

flow rules, and that the clearance is no more tagged than the label (Vf ⊑ fC).

3.4.2 File System Pickles

Asbestos uses a flexible technique for preserving privileges called pickling. Using

pickles Asbestos provides two persistent storage services, a file system and a
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Operation Requirements Results

read(f) Tf ⊑ CP TP ← TP ⊔Tf

write(f) TP ⊑ Cf

create(f , d, T, C) TP ⊑ Cd, Td ⊑ CP , TP ⊑ T,C ⊑ T TP ← TP ⊔Td, Tf ← T, Cf ← C

pickle(f , d, T, C, TP ⊑ Cd, Td ⊑ CP , TP ⊑ T,C ⊑ T, TP ← TP ⊔Td, Tf ← T, Cf ← C,
t, ℓ, pass) TP (t) = ⋆, TFS(t) = ⋆ tf ← t, ℓf ← ℓ, passf ← pass

unpickle(f , 3, pass) Tf ⊑ CP TP ← TP ⊔Tf

unpickle(f , ℓ, pass) TP ⊑ Cf , Tf ⊑ CP , ℓ ≥ ℓf , TP ← (TP ⊔Tf ) ⊓ {tf ℓ,3}
where ℓ < 3 pass = passf

Figure 3.7: File operations on file f in directory d by process P .

shared database. The labeled file system enables the system to store user data

without the risk of leaking them to unauthorized recipients. This effectively means

that mutually untrusted users and programs are able to safely read and write the

file system without risking privacy leaks. The Asbestos file system uses pickle

files to serialize tags.

A pickle file, or pickle, is a serialized tag represented as a file in the file system.

A process with privilege for a tag may preserve that privilege by creating a pickle.

Later on, another process may unpickle the pickle, thus acquiring the privilege

that was preserved in the pickle.

To create a pickle of tag t, process P sends a request to the file system con-

taining t and the maximum privilege (i.e., smallest level) that the file system

should grant as the result of unpickling the pickle. Since a pickle is also a file, P

also specifies its pathname, label and clearance.

To acquire the stored privilege in the pickle, process Q (where Q may be the

process equivalent to P after one or more reboots) issues an unpickle request to

the file system.
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DN

DBP DBW

Figure 3.8: The main components of the Asbestos Web server and their interac-
tions.

3.5 Developing for Asbestos

Asbestos labels have been used to develop a privilege separated Web server [EKV05]

inspired by the OK Web server [Kro04]. The Asbestos Web server (AWS) labels

user data as well as user network connections in order to ensure data isolation

and avoid information leakage—e.g. leaks by bug exploits in the CGI scripts

or any other untrusted application component. The main AWS components—as

illustrated in Figure 3.8—include:

• A trusted network daemon (N), a system process with permission to access

the network card. N labels network connections so that contaminated data

can not leak to connections without adequate clearance.

• A trusted demux process (D) that accepts connections and redirects in-

coming requests to the appropriate worker process. When a new user con-

nects to the service through N, the connection is forwarded by N to D and

D looks up the tag identifying the incoming user—possibly performing a

username/password authentication step. After D has identified the incom-

ing user (e.g. Alice), it notifies N of the user’s identity. This allows N to

mark the corresponding connection with Alice’s identity, which both con-

taminates incoming data as Alice-confidential and allows Alice-confidential

data to escape on that connection. As a result, the demux, like the network
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daemon, is trusted.

• A set of worker EPs (W), each handling requests for a particular user

and contaminated accordingly. Alice’s worker has clearance to access only

Alice’s data from the database and is considered untrusted (e.g. buggy CGI

script).

• A database proxy process (DBP), responsible for marshalling all data com-

ing in and out of the database: it sanitizes requests, checks privilege for

writes, and contaminates all outgoing data appropriately—using the owner’s

tag. Since DBP handles all user data it is considered a trusted component.

• A simple database (DB) back-end that stores user data.

The AWS uses DIFC to protect the secrecy of user data even when (the

untrusted) parts of the application have exploitable bugs. For instance, the net-

work connection used by Alice is marked with Alice’s contamination {a3} and

is given clearance to receive Alice’s contamination (i.e. Cnetd(a) = 3). With this

label configuration, Alice’s data may be exported over the network but Alice’s

network connection does not have clearance to export Bob’s data. Consequently

even if Alice compromises some untrusted component of the application (e.g. a

CGI script) and gains access to Bob’s secrets, she can not export that information

due to information flow restrictions imposed by Asbestos labels.

The AWS was also used to implement Muenster [BEK07], a job searching

Web service resembling some of the popular services such as Monster.com or

HotJobs.com. Using Asbestos labels, Muenster is able to provide a novel applica-

tion development paradigm that is inspired by the recent success of Wikipedia [Wik]

and other similar collaborative efforts: Untrusted developers (essentially users of

the Web service) are able to upload their own code (e.g. in the form of binaries)
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to customize and augment the functionality of the Web service. In the context of

a job-search Web site, both job seekers and employers are able to upload binaries

for executing custom searching on the database as well as custom declassifiers

that make decisions about their private information based on each user’s criteria.

The Muenster application demonstrates that using the information flow con-

trol tools provided by Asbestos labels we were able to successfully implement a

service that allows mutually untrusted users to upload untrusted custom code to

the Web server without breaking system security guarantees and application pol-

icy. More specifically, Muenster’s features prevent a user’s uploaded (untrusted)

module to export data about another user without her permission. Furthermore,

write access to the database is also protected by Asbestos labels to ensure that

appropriate privilege is required to write to each row. Finally, uploaded code is

able to create private compartments implementing custom private policies. Using

Asbestos labels, Muenster is successful in providing a discreet job searching and

posting service, keeping user data private despite untrusted extensions running

on the server.

3.6 Summary

The Asbestos operating system makes nondiscretionary access control mecha-

nisms available to unprivileged users, giving them fine-grained, end-to-end con-

trol over the dissemination of information. Privilege management is performed in

a decentralized fashion: creating new isolation domains—or compartments—does

not require and special type of system privilege. By decentralizing privilege man-

angement, Asbestos allows developers to use the Asbestos labeling mechanism

to design, implement a wide range of security policies, including data isolation

and confidentiality policies necessary to improve the security of networked server
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applications.

Fine-grained privilege management allows Asbestos developers to significantly

reduce the amount of privilege each application module holds. However, most ap-

plications need to be able to restore their privilege after an application and/or

system restart. Asbestos’s labeled file system supports this functionality by pro-

viding means to serialize and store labels persistently, therefore preserving privi-

lege.

Using Asbestos we developed a privilege-sperated Web server, able to provide

data isolation for the Web application users, even in the presence of bugs. Al-

though the security policy is defined by the application developer, it is strictly

enforced by the operating system kernel, therefore providing strong security guar-

antees even when the CGI scripts ran on the server have been contributed by

untrusted third-party developers (e.g. in the Muenster application).

The data isolation features provided by the Asbestos Web server and the

Muenster application demonstrate that developers can significantly improve the

security of networked server applications by using decentralized information flow

control. However, it is necessary though for developers to design and express the

desired application security policy in Asbestos label terms.
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CHAPTER 4

DIFC Policy Management Challenges

In this section, we use a concrete example derived from the Asbestos Web server

(AWS) [VEK07] architecture to further motivate the policy management and

debugging challenges addressed in this work.

Defining a DIFC policy involves deciding on the allowed and forbidden infor-

mation flows among application modules and the rest of the system, identifying

the amount of privilege each operation requires, and granting privilege to applica-

tion modules accordingly. It also often involves specifying a policy for dynamically

changing application elements, such as new processes created as users log in and

out of a server. An application written for a DIFC system is as secure as the

application policy that it implements (and, of course, the security kernel that

enforces the policy). Correctly defining and implementing the application policy

is of critical importance. With a too-broad policy, most of the application has

privilege, and the benefits of DIFC are not achieved; with a too-narrow policy,

an application will generally not function (e.g., system components will not be

able to communicate as needed).

Figure 4.1 presents a more elaborate version of the policy of the Asbestos Web

server of Figure 3.8. Each box in the figure represents a labeled application compo-

nent, and arrows represent communication between components required for the

application to be secure and functional. The most important aspect of the policy

in this example is the requirement for confidentiality: a user’s information must
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Figure 4.1: A representation of the explicit communication requirements in an
AWS-like policy. Arrows represent expected communication patterns; single ar-
rows denote one-way communication. In the absence of arrows, a per-component
default communication rule applies: white components (N, D, DBP) are able to
freely send and receive information by default, lined components (W) are “receive
only” by default, and shaded components (L, DB) are isolated, unable to send or
receive by default.

not escape to some other user, even in the presence of bugs in worker processes.

We examine how each of the application processes should (not) communicate

with the rest of the system, and define the application policy accordingly.

The network daemon N and the demux D are considered trusted components. 1

After D has identified and authenticated the incoming user (e.g. Alice), and has

notified N, it informs the system logger L of the new connection. For safety

reasons, L is deliberately isolated and only needs to receive information from D

(arrow 2).

Once the connection has been logged, D forwards the request to one of the

untrusted worker processes W for execution. W thus resembles a CGI script,

only for performance reasons it is using the event process mechanism. W can

access Alice’s data through the database front-end DBP. In order to enforce our

confidentiality policy and prevent Alice’s data from leaking—even if W is buggy—

we require that W can send information only to components that are privileged

to receive data belonging to Alice, such as N, D, and the database front end

1We assume that the demux as well as all other trusted components such as N are part of
the application’s trusted computing base (TCB).
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DBP. For our confidentiality policy to be enforced, we do not need to restrict

W’s default ability to receive information freely: information that can reach W—

without having been blocked by the security policy on the sender side—does not

pose a confidentiality threat, as long as W can not leak it.2 Therefore, we need to

ensure that W may have two-way communication with N, D, and DBP (arrows

3, 4 and 6) and receive-only communication otherwise.

Since DBP handles all user data it is considered a trusted component. In

our application DBP needs to have two-way communication with W and the

database DB (arrows 4 and 5), but there is no fundamental policy reason to

restrict DBP’s communication with other processes—given that it is a trusted

component, interposing on all queries and data to and from the database. To

ensure that all database accesses are marshalled we need to isolate the database

(DB) from the rest of the system, making it accessible only through DBP. An

attempt by Alice to obtain Bob’s data through DBP will fail since DBP marks

Bob’s data in a way that Alice’s worker cannot receive. Similarly, if Alice’s worker

is buggy and tries to leak Alice’s information through Bob’s network connection,

the attempt will fail since D has arranged that Bob’s network connection can

export Bob-confidential data (i.e. data carrying Bob’s contamination), but not

Alice-confidential data.

The arrows in Figure 4.1 represent the expected communication patterns

among application components. A complete policy must also model the commu-

nication behavior of each component with any processes not mentioned explicitly

in the diagram. A simple such model is a default rule that applies to any process

pair not explicitly mentioned. Since N, D, and DBP are trusted components, their

2Notice that “receive only” behavior does not mean that W can freely receive any type of
contamination: it means that it has the default Asbestos receiving behavior, with no additional
receiving restrictions.
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communication behavior does not need to be limited by default in this high-level

policy. 3 (These processes may, and do, limit their own communication behavior

to enforce finer-grained policies—for instance, N may use Asbestos port labels

to restrict access to certain ports, requiring privilege to send information over

to them.) This is represented in Figure 4.1 by placing N, D, and DBP in white

boxes. In the case of L and DB an “isolated” default applies, represented by the

shaded box; these processes should be prevented from communicating with other

unprivileged processes. In the case of W a “receive-only” default applies, repre-

sented by the box with diagonal lines. A “send-only” default rule is also possible.

In the absence of relevant explicit rules, the communication between two pro-

cesses with contrasting defaults is governed by the most restrictive default. For

instance, although D’s default rule is “unrestricted communication”, D may not

communicate with DB, since DB’s default rule is “isolated”.

The IPC analogy underlying communication constraint diagrams like Fig-

ure 4.1 is easy to understand. However, a direct implementation of such a dia-

gram might generalize poorly to communication over shared resources, such as

files, or to processes created by processes in the diagram. Information flow natu-

rally generalizes communication constraints to any flow of information, not just

IPC. The desired behavior is expressed in terms of process and object labels,

which naturally track information through non-IPC channels like the file system.

For example, a file created by DB should not be directly readable by processes

other than DB and D (and possibly helper processes with the same labels); in

fact, other processes should not even be able to discover the new file’s existence.

Figure 4.1 can be translated into decentralized information flow labels. For

example, labels can prevent L from sending information to other processes: L

3Additionally, services such as the network daemon may often require that its communication
with the rest of the system is unrestricted (so that any process can use its services).
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becomes “higher secrecy” than the other processes in the diagram. Some aspects

of communication diagrams have no exact information flow equivalents. (For ex-

ample, a full implementation of the communication pattern W ↔ DBP ↔ DB

would prevent W from contacting DB directly independent of DBP’s behavior,

but Asbestos-like information flow cannot completely implement this constraint.

If W can send to DB via a proxy DBP, then DBP must be sufficiently privileged

that it could grant W the right to send to DB directly.) Nevertheless, communica-

tion patterns are a useful starting point for investigating simplified specifications

of information flow policies.

Unfortunately, the label translation of Figure 4.1 is not trivial: one simple

label implementation requires initializing the corresponding processes requires 20

Asbestos label operations in order to initialize the relevant process labels for a

single user, as shown on Table 4.1. This complexity of policy management tasks

is one important aspect that significantly complicates the DIFC programming

model for developers. The issue is that a communication pattern like Figure 4.1

corresponds to several interacting information flow policies, requiring separate

privilege domains and privilege manipulations. For instance, the relationship be-

tween W, DBP, and DB requires policies that (1) prevent W from sending data

to any outside process, but (2) allow W to communicate with DBP, (3) pre-

vent DB from communicating with any outside process, and (4) allow DBP to

communicate with DB. Implementing this requires at least two different kinds of

contamination and the corresponding privilege. First, DB is contaminated to pre-

vent its communication with outside processes; however, DBP may remove this

contamination, and must thus hold the corresponding privilege. Second, W is also

contaminated to prevent it from sending data to outside processes, but since W

and DB have different communication patterns, the contamination governing W

must differ from that governing DB.
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Process Tracking label TX Clearance label CX

N {w ⋆,1} {w 3,2}
D {l′ ⋆, w ⋆,1} {w 3,2}
L {l 3, l′ ⋆,1} {l 3, l′ 0,2}

W {w 3,1} {w 3,2}
DBP {w ⋆, db ⋆, db′ ⋆,1} {w 3, db3,2}

DB {db3, db′ ⋆,1} {db3, db′ 0,2}

Table 4.1: Asbestos labels implementing the policy of Figure 4.1.

These interactions between components and their label implementation are

not easy to get right without debugging, and to make matters worse, debugging

an incorrect label configuration is difficult itself. For instance, let us assume that

DBP, in an attempt to remove unnecessary privilege from its labels, mistakenly

drops privilege to send information to the database. The next time it attempts to

forward data to W a label error will be generated because of the missing privilege.

Any debugging data in this case would explicitly or implicitly convey information

about DBP and W (e.g. DBP’s lack of database privilege, or W’s requirement

for privilege) and their release creates an information flow not subjected to the

system’s IFC rules. Although such a label error in this scenario is the result of a

programming bug, its details—including its very existence—will be concealed in

order to avoid information leaks, and the developer will have extremely limited

knowledge about why the application is not functioning.

4.1 Summary

Although system-based DIFC can simultaneously achieve high performance and

effective isolation [VEK07], it offers a challenging programming model, as demon-

strated by the example derived from our experience developing the Asbestos Web

server. There are fundamental problems with the model even aside from general
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developer unfamiliarity. Using Asbestos labels to design and implement security

policies is a difficult and error prone process because the label interface is from

human-friendly. Furthermore, fine-grained policy specifications are spread over

several application pieces and require multiple label operations, making it hard

to inspect and reason about policies. Consequently, policy implementation bugs

are very common, even if the developer is familiar with the labeling mechanism

of the DIFC system.

From the DIFC system’s (i.e. the kernel’s) point of view, policy bugs and

common programming errors are usually indistinguishable from policy exploit

attempts; the system cannot expose developers to information about these er-

rors, complicating debugging. Exposing debugging information in an uncontrolled

fashion may—explicitly or implicitly—violate the security policy.

In order to improve the DIFC programming model, it is necessary to ad-

dress these policy management and debugging issues. First, developers need a

high-level, human-friendly, easy-to-use way to specify application policies. Ad-

ditionally, it is important for developers to be able to debug policy errors using

debugging mechanisms that do not violate the security guarantees of the system.
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CHAPTER 5

Policy Description Language

DIFC systems take on the responsibility of enforcing security policies, but shift

the responsibility of policy definition and implementation to application develop-

ers. This allows developers to create more interesting policies, but with current

tools the policies themselves are difficult to construct—even in the case of rela-

tively simple policies, like the one presented in Figure 4.1. Practical reasons for

this include:

• Policies are expressed by developers, directly in code

• Policies are expressed in terms of Asbestos label, which may be more diffi-

cult to work with than process communication relationships

• Policy implementation is spread across multiple code locations, which com-

plicates reading, sharing and reasoning about the policy

• Policy definition is error-prone and debugging policies implemented at the

label level is challenging

Despite the fact that Asbestos labels are a very expressive and effective primi-

tive for policy implementation, we believe that developers understand and reason

about policies by describing the communication behavior of each component with

respect to the rest of the system. Consequently, a developer would find it more

natural to express the desired policy in terms of communication patterns that are
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(not) allowed within the application. We therefore develop a prototype language

to experiment with expressing labels in terms of pairwise process communication

relationships. This requires ways to refer to components participating in pairwise

communication and, most importantly, allowed and forbidden communication be-

havior. Our proposed policy description language [EK08] is capable of expressing

application policies in terms of communication constraints.

Although communication rules are a convenient and appropriate way to de-

scribe a security policy, DIFC labels are a much better implementation technique

for security policies. This is because a process’s labels form a concise and com-

plete description of its communication constraints that can apply even across

shared resources like the file system or a shared database. For example, a policy

may require that the contents of a secret file may not escape to the network. In a

DIFC system a process that may send information to the network daemon is able

to do so as long as it has not accessed the secret file. Once the file is accessed, the

process “automatically” loses the ability to send data over the network. Using

information flow rules—rather than strict, explicit communication restrictions—

is much more effective, since it provides fine-grained control over the policy and

more flexibility (e.g. the ability to access system services such as the network

daemon) than a strict communication rule that might need to forbid network

access to the process altogether.

To benefit from the advantages of DIFC, we must translate the policy de-

scribed by developers in terms of communication restrictions, into information

flow rules. To achieve this, we compile the communication constraints down into

the appropriate labels that implement the DIFC policy.
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5.1 Policy Description Language

The hypothesis underlying our policy description language is that developers

would prefer to express security policies in terms of communication relationships

rather than in labels. We thus designed a language for expressing policies that

resemble the relationships diagrammed in Figure 4.1, but compiles to labels like

those in Table 4.1. Figure 5.1 summarizes the policy of Figure 4.1 in terms of

communication relationships between components—a high-level description we

believe is closer to the way developers can understand policies (as opposed to

Asbestos label expressions). Our policy language specifies these relationships in

one compact and intentionally simple definition, rather than scattering necessary

operations throughout application code. Notice that in order for the high-level

1. N can send to any process but L and DB. It can receive from any process
but L and DB.

2. D can send to any process but DB. It can receive from any process but L
and DB.

3. L can send to no process in the system, and can receive from no process
but D.

4. W can send to no process but N, D and DBP, and can receive from any
process but L and DB.

5. DBP can send to or receive from any process but L.

6. DB can send to or receive from no process but DBP.

Figure 5.1: Our example policy expressed as communication restrictions.

policy description (corresponding to the communication restrictions of Figure 5.1)

to reflect the AWS application policy of Figure 4.1 realistically, we need to ensure

that it can refer to and be instantiated with real, pre-existing tags utilized by the

system. For instance, the worker W may correspond to some user, Alice, who has
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state stored on the file system (or records in the database) that has been marked

with one or more tags. The goal of the policy is to allow the export of Alice’s

information to her worker, but not any other secret information.

After communication patterns between application components have been

compiled down to equivalent Asbestos label setups they can be used to instantiate

process labels and launch the application. Our policy language provides additional

constructs able to describe important runtime properties of the application, used

to instantiate policies and launch applications.

5.2 Implementation

In order to provide a policy language capable of simplifying policy management,

we had to address the following goals and challenges:

1. Design a language capable of describing compartments and communication

patterns between them. Ensure that the language is powerful enough to

describe interesting policies, yet simple and readable.

2. Identify the fundamental label translation rules that will be used to map

higher level policy expressions to equivalent DIFC label arrangements.

3. Define language constructs able to capture important runtime properties

of applications (e.g. event processes) and integration with the system (e.g.

interface with pre-existing compartments).

4. Provide developers with a tool capable of translating the high level descrip-

tion to equivalent Asbestos label configurations.

5. Provide a component capable of instantiating policy labels and launching

the application.
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Compartments The first task of the policy language is to represent the main

principals involved in the policy, each corresponding to an Asbestos compartment,

and specify the communication rules that constrain communication between those

compartments.

A compartment represents a set of objects that should be treated uniformly

by the security policy. In Asbestos, these objects include application processes,

process-like abstractions such as event processes, system services such as the

network daemon, and files. In the language, each compartment has a unique name

and is defined by the comp construct. Figure 5.2 presents a simplified version of

our Asbestos Web server policy from Figure 4.1 written in the policy description

language; lines 1–17 define the system’s 6 compartments.

1 comp N {

2 default <>

3 env NET_S NET_R

4 }

5 comp DB {

6 default !

7 unpickle /path/db_s /path/db_r

8 }

9 comp D DBP {

10 default <>

11 }

12 comp L {

13 default !

14 }

15 comp W {

16 default <

17 }

18

19 L < D

20 W <> N

21 W <> D

22 W <> DBP

23 DB <> DBP

Figure 5.2: A simplified implementation of our example policy in our policy lan-
guage. The parser will use this description to produce the labels of Figure 4.1.

Communication Rules Given a set of compartments, the system’s commu-

nication behavior can be defined pairwise: for any two compartments X and Y ,
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the policy defines what communication is allowed between X and Y . The four

possibilities for each pair are no communication, bidirectional communication,

and (less frequently) unidirectional communication in either direction. As pre-

sented in Table 5.1, we write these possibilities using four basic communication

operators: “!”, “<>”, “<” and “>”. The last rule stated for a given pair of com-

Operator Example Meaning

! X ! Y Isolation: X can neither send nor
receive from Y

<> X <> Y Unrestricted (bidirectional communication):
X can both send and receive to/from Y

< X < Y Receive-only: X can only receive
messages from Y (cannot send to Y )

> X > Y Send-only: X can only send
messages to Y (cannot receive from Y )

Table 5.1: The four basic communication operators used between compartments
(explicit rules) or as compartment defaults.

partments takes precedence. Lines 19–23 define explicit communication rules for

the AWS application.

To avoid the tedium of writing a full pairwise rule matrix, most relationships

are defined implicitly through default rules. Each compartment is associated with

one of the communication operators of Table 5.1 which signifies the compart-

ment’s default communication behavior (or simply the compartment’s default).

The compartment’s default governs the compartment’s communication with all

compartments and/or processes for which there is no explicit communication rule.

The meaning of the four possible compartment default values is analogous to that

presented on Table 5.1: bidirectional (<>), send-only (>), receive-only (<), or

isolated (!) rules may be applied to non-explicit communication relations. In the

absence of an explicit rule definition, the communication between X and Y is

defined as the intersection of the corresponding defaults. For example, Figure 5.2
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implies that W ! DB (the intersection of W ’s default W < DB and DB’s default

DB ! W ). Note that the compartment default constrains a compartment’s com-

munication with entities not explicitly mentioned in the policy as well as entities

that are mentioned explicitly in the policy definition.

Label calculation The second basic task for the implementation of this sim-

ple language is to calculate labels for each compartment’s processes and other

entities that, together, constrain communication as required by the policy. A

closer look at Figure 4.1 and Table 4.1 reveals the basics of mapping rules and

compartment default behaviors to labels. In order to control a compartments

communication abilities, we need at most two tags: one for controlling sending

and one for controlling reception of information. For a compartment X we write

these tags as x (referred to as the “send tag”, used to restrict the compartment’s

sending ability) and x′ (referred to as the “receive tag”, used to implement re-

ceiving restrictions). The send and/or receive tag may not be used (i.e. appear

in any label) if the compartment has no sending and/or receiving restrictions.

Two tags per compartment are sufficient to implement any pairwise communi-

cation policy representable with Asbestos labels at all. Although two tags are

not necessarily minimal—some policies would require fewer than two tags for

some compartments—tags are not a limited resource and more tags cause little

performance penalty in practice [VEK07].

Processes in compartment X have their label components for x and x′ de-

fined by X’s default communication pattern. Table 5.2 presents how we can use

X’s compartment tags to implement the compartments default communication

behavior and—in essence—represent the compartment in Asbestos label terms.

The unrestricted default communication rule, <>, leaves a process’s labels un-

changed from the system-wide defaults, thus posing no restrictions (with respect
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X default TX CX

<> {1} {2}
! {x3, x′ ⋆,1} {x3, x′ 0,2}
< {x3,1} {x3,2}
> {x′ ⋆,1} {x′ 0,2}

Table 5.2: The label implementations for X’s four possible default communication
behaviors.

to x and x′) to X’s sending and receiving ability. We implement the ! default rule

by using both x and x′: {x3} in TX prevents sending to any process that doesn’t

have special {x3} clearance, while {x′ 0} in CX blocks all incoming messages un-

less the sender has {x′ ⋆} privilege. Notice that the {x3} contamination implies

the corresponding {x3} clearance, since Asbestos requires that for any process

X, TX ⊑ CX at all times (this practically means that process should always be

able to send a message to itself).

The “receive-only” (<) and “send-only” (>) defaults are implemented using

only x and x′ respectively: in the receive-only case (third line of Table 5.2), we

do not make use the x′—since we do not have any receiving restrictions—and use

x to restrict X’s sending ability through the presence of {x3} in TX (and the

necessary corresponding {x3} clearance). Given that the clearance label default

level is 2, this contamination prevents X from sending messages freely to processes

that do not have explicit {x3} clearance.

Similarly, for the send-only default (fourth line of Table 5.2) we do not make

use of x (no sending restrictions) and use x′ to restrict X’s receiving ability

lowering X clearance with respect to x′ below the default contamination of 1

(CX(x′) = 0). Given that the tracking label default level is 1, lowering X’s

clearance to CX(x′) = 0 prevents X from receiving messages by default (since a

sender’s default contamination with respect to x′ is greater than 0) .
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X default: <> TX CX TY CY

X <> Y {1} {2} {1} {2}
X ! Y {x2,1} {x′ 1,2} {x′ 2,1} {x1,2}
X < Y {x2,1} {2} {1} {x1,2}
X > Y {1} {x′ 1,2} {x′ 2,1} {2}

Table 5.3: Mapping of rules to labels when X’s default is “<>”: as the first line
of Table 5.2 indicates, X’s default does not imply any changes to X’s labels.
Tags x and x′ are used to implement only the explicit communication rules
between X and Y .

X default: ! TX CX TY CY

X <> Y {x3, x′ ⋆,1} {x3, x′ 0,2} {x ⋆, x′ ⋆,1} {x3,2}
X ! Y {x3, x′ ⋆,1} {x3, x′ 0,2} {1} {2}
X < Y {x3, x′ ⋆,1} {x3, x′ 0,2} {x′ ⋆,1} {2}
X > Y {x3, x′ ⋆,1} {x3, x′ 0,2} {x ⋆,1} {x3,2}

Table 5.4: Mapping of rules to labels when X’s default is “!”: as indicated by
the second line of Table 5.2, x and x′ are first used to implement X default
(underlined changes to X labels only). Given X’s fully restrictive default, we
use x and x′ to implement the explicit communication rules between X and Y .
In practice this amounts to giving Y the necessary privilege with respect to x

and/or x′ in order to override X’s communication restrictions.

X default: < TX CX TY CY

X <> Y {x3,1} {x3,2} {x ⋆,1} {x3,2}
X ! Y {x3,1} {x3, x′ 1,2} {x′ 2,1} {2}
X < Y {x3,1} {x3,2} {1} {2}
X > Y {x3,1} {x3, x′ 1,2} {x ⋆, x′ 2,1} {x3,2}

Table 5.5: Mapping of rules to labels when X’s default is “<”: as indicated
by the third line of Table 5.2, x and x′ are first used to implement X default
(underlined changes to X labels). We use x and x′ to also implement the explicit
rules between X and Y —given the changes due to X’s “receive-only” default.

X default: > TX CX TY CY

X <> Y {x′ ⋆,1} {x′ 0,2} {x′ ⋆,1} {2}
X ! Y {x2, x′ ⋆,1} {x′ 0,2} {1} {x1,2}
X < Y {x2, x′ ⋆,1} {x′ 0,2} {x′ ⋆,1} {x1,2}
X > Y {x′ ⋆,1} {x′ 0,2} {1} {2}

Table 5.6: Mapping of rules to labels when X’s default is “>”: as indicated by
the fourth line of Table 5.2, x and x′ are first used to implement X default
(underlined changes to X labels). x and x′ implement the explicit rules between
X and Y —given X’s “send-only” default.
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A communication rule involving two compartments affects the labels of pro-

cesses in either compartment. Tables 5.3, 5.4, 5.5, and 5.6 demonstrate partial

labels for the sixteen possible combinations of rules and defaults. In essence, the

Tables demonstrate the label components that need to appear to each process’s

labels in order for each combination of default and explicit rules to be imple-

mented, when X is the left-hand-side operand. Our implementation chooses to

implement rules of the form X ? Y using X’s tags. Y ’s tags are involved only

if the requested communication differs from to Y ’s default; for example, imple-

menting a rule like X < Y , which allows Y to send to X, would use the y and y′

tags only if Y ’s default were ! or <, which prevent Y from sending by default.

We use the label fragments from Tables 5.3, 5.4, 5.5 and 5.6 to set up com-

partment labels. First, the compartment tags implement the defaults of all com-

partments, based on Table 5.2’s translations. Then, for each rule, we choose the

table that corresponds to the left-hand compartment’s default and use it to look

up the rule translation. For instance, if X’s default is “<” (“receive-only”) and

the rule is X > Y , then we will use X’s compartment tags as shown on the

third line of Table 5.5. If the rule operator violates the other compartment’s de-

fault, we interpret the rule using its tags as well. In our previous example, if rule

X > Y violated Y ’s default, we would also consider the equivalent “reverse rule”

(Y < X) and use y and y′ in the produced label setup. Otherwise, only x and

x′ are used to implement the (original) rule and we do not need to consider the

reverse rule.

Translation example Let us reconsider the AWS example of Figure 4.1, as

expressed using our policy language on Figure 4.1.

On line 21, the rule W <> D ensures that workers can have a two way com-
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munication with the demux, despite the worker’s “receive-only” default (declared

on line 16). The translation of W ’s default—which was performed at an earlier

step—will have already setup W ’s labels1 with respect to w and w′ according

to the underlined components of Table 5.5: TW (w) = 3, TW (w′) = 1 (by de-

fault), CW (w) = 3 and CW (w′) = 2 (by default), therefore implementing W ’s

“receive-only” default behavior. As with any rule, we first examine the “forward

direction” using the left-hand-side operand’s tags—i.e. check how the rule needs

to implemented using w and w′, given W ’s default. Since W ’s default is < and the

rule operator is <>, we will use the first row of Table 5.5 to translate this rule,

substituting x and x′ with w and w′. The changes necessary to implement the

rule—as indicated by the first row of Table 5.5—also involve the right-hand-side

operand’s labels. D’s labels need to be set to:

• TD(w) = ⋆, giving D privilege with respect to W ’s compartment, so that

D can not get contaminated with {w 3} when receiving data from W

• TD(w′) = 1, by default

• CD(w) = 3, giving D clearance with respect to W ’s compartment so that

D able to receive data contaminated with {w 3}

• CD(w′) = 2, by default

Translating the “forward direction” is not always adequate, since it only en-

sures that we override the left-hand-side operand’s default (if necessary). It is

important to ensure that the communication rule in question does not oppose the

right-hand-side operand’s default. In this example, since the rule operator (<>)

1Notice that W and D are compartments that may contain multiple processes and files.
Although we refer to “W ’s labels” for brevity, technically we refer to changes necessary to the
labels of any process belonging to the W compartment.
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does not contradict the right-hand-side operand’s default (D’s default, <>), we

do not need to translate the rule in the “reverse” direction (i.e. D <> W , using

d and d′ for the translation). These necessary changes to the labels of W and D

are also visible on Table 4.1.

Having identified the translation rules that allow us to map defaults and rules

to Asbestos labels, we built a parser capable of translating the policy language

to Asbestos label configurations automatically. Using the rules of Tables 5.3, 5.4,

5.5 and 5.6 the parser is able to translate the policy description of Figure 5.2 to

the label setups of Table 4.1.

5.2.1 Launcher

Since we intend the language to replace existing error-prone label manipula-

tions, the implementation should produce these labels at run time, rather than

simply providing them for the developer’s information. Furthermore, typical As-

bestos applications include a “wrapper” or “launcher” component, responsible

for spawning application processes and setting up their labels according to ap-

plication policy. Having calculated an application’s policy labels using our policy

parser, we are able to take a step further and remove the need for such spe-

cialized wrappers. Several language features support this launcher functionality,

including definitions of application binaries associated with each compartment;

the launcher program can then start these binaries with the correct labels. Most

application features require additional support. For example, server applications

can create and destroy user event processes at run time, as users join and leave

the system. The policy language supports this by allowing the user to describe

EP properties and dynamically parameterize user compartments at run time.

An application launcher incorporated into the language parser instantiates
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these labels at run time using additional language constructs. We have extended

the language so as to make it able to describe important application run-time

properties, necessary for application launching.

Launching an Application When instantiating the application using the con-

figuration file, the launcher forks a process for each executable, then performs the

following tasks:

• Implementation of the policy by setting up process labels as calculated for

each process.

• Creation of all process ports and setup of port labels according to policy.

• Environment variable initialization for all processes using the newly created

port values.

• Granting of port privilege to processes according to policy.

• Transfer of ports to their respective owners.

• Making the new processes runnable.

Once the developer has expressed the policy using the policy configuration lan-

guage, little or no code modification is required for the application to run using

the launcher.

Executables Using an exec block the developer may declare application ex-

ecutables to be started in a given compartment, including the path of the ex-

ecutable (“bin”), any arguments to be passed, and any other compartments to

which the processes will belong (“belongs”). For instance, the following fragment
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from the AWS policy presented in Appendix A describes the demux (D), stat-

ing the executable the launcher must spawn (“/okws-demux”), the arguments to

be passed to it (“sh sql login edit view”), and that the process belongs to the

“DEMUX” compartment and therefore its labels should be set up accordingly.

exec demux {

bin /okws-demux sh sql login edit view

belongs DEMUX

...

}

If an executable belongs in multiple compartments, its process labels will

be the combination of all compartments’ calculated policy labels; if the compart-

ments have conflicting defaults (e.g., one is unrestricted while another is isolated),

then each of the defaults will be implemented in the process labels, which effec-

tively enforces the most restrictive default. As it initializes a compartment, the

launcher creates the compartment’s send and receive tags. To start a process, the

launcher effectively forks, sets up the forked process’s labels, and executes the

named executable, much like a shell.

External compartments Many useful application policies require the applica-

tion components to interact with the rest of the system—such as compartments

that are external to the application compartment structure. For example, the

database may contaminate the data it stores with a tag that is stored persis-

tently on disk (using the pickle() mechanism) so that it can be retrieved after

system restart. Similarly, the AWS application of Figure 4.1 may not run its

own network daemon, but instead use an external system service to access the

network. Moreover, the network daemon process is a component external to the
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application: the developer is not responsible for launching the process and does

not have control over it, yet it participates in the application policy. In both

cases, the AWS application policy needs to know of and interact with external

compartments and process that have not been created and are not managed by

the application itself.

Our policy language provides developers with the ability to describe such

interactions by supporting the notion of external compartments and external ex-

ecutables. The developer may implicitly declare a compartment E as external by

specifying the (external) location of its send and receive tags (e and e′) through

the use of one of two mechanisms: environment variables or file system pickles.

For instance, in Figure 5.2 the database compartment DB is initialized through

a pair of pickle files storing the values used to initialize the compartment tags

db and db′. Compartment N is also declared external (e.g. because the network

daemon is an already running system service) and the launcher will initialize the

compartment tags n and n′ using the values of the environment variables NET S

and NET R.

Similarly, executables can also be declared external by stating that the exe-

cutable belongs to an external compartment—using the appropriate belongs state-

ment in the relevant exec block. Notice that external compartments executables

may belong to can be declared “in place”—inside the exec block. For instance,

one could make an executable external by adding one of the following lines to an

exec block:

belongs (env EXT_SEND EXT_RECEIVE)

or
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belongs (unpickle /path/to/pickle1 /path/to/pickle2)

If an external compartment participates in a policy rule that requires its labels

to be modified, then the launcher will generate a relevant warning when process-

ing the labels. In the case of external executables, the launcher will attempt to

send to one of the ports of the external executable a message carrying labels that

would have the desired effect on the recipient’s labels. Note that this is possible

because almost all potential modifications to the external executable’s labels can

be performed by any process holding privilege with respect to the relevant com-

partment handles (e.g. the launcher) by making appropriate use of discretionary

labels attached to messages sent to a port the external executable is receiving

from. The only case that can not be handled using message discretionary labels is

when the external process’s clearance label needs to be lowered to 1 with respect

to a compartment’s send tag (e.g. Table 5.6, rows 2 and 3). For example, a policy

may involve a local compartment X and an external executable ex:

comp X {

default >

}

exec ex {

belongs (unpickle /path/to/pickle1 /path/to/pickle2)

}

X < ex

According to Table 5.6, rows 3, it is necessary to lower ex’s clearance labelin

order to implement the < (“receive only”) operator between X and ex: having

{x1} in its clearance label will prevent ex from receiving messages from X.

In these particular cases the label manipulation would have to be performed

by a privileged third-party process. Alternatively, a userspace protocol could be
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implemented between the launcher and the external process—which is assumed

to be cooperating.

The detailed implementation of the AWS in Appendix A makes use of external

executables.

Event Processes EPs differ significantly from all other application compo-

nents because they cannot be launched during application startup. Instead EPs

are created dynamically, at unpredictable points in time. The way our policy lan-

guage models EPs is by using dynexec blocks, which are based on the observation

that each server process EP essentially implements the same policy as the other

EPs of that process, only for a different user. In that sense, EPs resemble some

sort of policy “template”, parameterized and applied to a new EP instance for

each user.

EPs are modeled as forks of a base process, like a “dynamic process” that

may have multiple instances. A dynexec declaration block nested within an exec

block (the EP base process) defines EP policy. Since an EP is an executable

instance, its declaration may specify most of the properties of an executable,

such as additional compartments the EP belongs to. Each new EP is hosted in a

separate, dynamically created compartment.

A “source” property identifies the executable that is responsible for spawning

new EPs by sending the relevant messages to the base process. For example, in

the AWS the demux D is responsible for instantiating new event processes as

users log in. To do so, it sends the necessary messages to the base worker process

W , and therefore, in our language, the demux is the “source” of the worker EPs.

The declarations inside the dynexec block are initialized at EP creation time

by the process responsible for creating the EP, i.e. the EP source. The EP source
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dynexec USER {

source demux

belongs (env USER_S USER_R default <)

file user-tmpl

port WORKER_PORT {

type restricted

}

env WRPORT=port:WORKER_PORT

...

}

Figure 5.3: Fragment of the AWS policy description presenting the worker event
process definition, using a dynexec block.

process executes a special block of code generated by the policy launcher; that

generated code includes all the operations required to set up the new EP: instanti-

ate the “policy template” for the new user by manipulating EP labels accordingly,

create and transfer ports to bootstrap communication, and set EP environment

variables. By setting EP environment variables the EP-creation code can param-

eterize each EP. For instance, when a new EP worker is created for an AWS

user that just logged in, the EP-creation code will set the new EP’s environ-

ment variables (e.g. port values that will bootstrap communication) to values

corresponding that particular user. Our implementation of the launcher is able

to generate both C and Python EP-creation code.

The automatically generated code ran by D upon creation of a new EP ex-

pects to initialize the new EP compartment tags using the environment variables

USER S and USER R. Therefore, before calling the code, D ensures that USER S

and USER R have been initialized appropriately to reflect the current user.

Figure 5.2.1 presents a fragment of the AWS policy (presented in Appendix A)

which is contained in the “worker” exec declaration block and defines the “USER”

event process. The block starts by stating that the “demux” executable is the
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source of each newly created EP. A new worker EP is “spawned” when D dis-

patches a new user to W, and needs to be in a receive-only, per-user compartment.

The automatically generated code is ran by D upon creation of a new EP and uses

the USER S and USER R environment variables to initialize the new EP com-

partment tags. Therefore, before calling the code, D ensures that USER S and

USER R have been initialized appropriately to reflect the current user’s identity.

The values of these environment variables are used to implement the EP compart-

ment’s “receive-only” default labels—according to Table 5.2. variables USER S

and USER R that will be used to implement a “receive-only” default. The code

generated by the launcher (a function with a predefined name and arguments)

will be stored in the file “user-tmpl.c” or “user-tmpl.py”—depending on whether

we instructed the launcher to generate C or Python code—and will be included

in the EP-source process. In this example, the demux (EP source) will include

the function stored in the file “user-tmpl.c” as part of its source code and call

it whenever a new user EP is instantiated. For each EP, a new “restricted” port

“WORKER PORT” will be created and an environment variable WRPORT

will be set to serve bootstrapping needs.

Bootstrapping The port directive allows developers to declare uniquely named

ports for a process or EP. Also, since Asbestos ports are labeled and can partici-

pate in the policy, we support the declaration of compartments to which a port’s

label belongs, therefore ensuring that the port label permits the reception of mes-

sages that carry the contamination of those compartments. Moreover, developers

can further specify the policy port labels implement by declaring whether the port

is “restricted” or “open”: a restricted port’s label requires privilege with respect

to the port for a message to go through, while an “open” port’s label does not.

The launcher uses port declarations to create communication endpoints between
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application components and bootstrap communication.

The application bootstrapping process almost always requires that each appli-

cation component needs to know of at least one port value in order to bootstrap

its communication with the rest of the application and/or system. For instance,

in the AWS policy fragment of Figure 5.2.1, each new EP needs to know the

value of the port created for it (“WRPORT”). Additionally, it will need to know

of additional port values, such as a port to communicate with the demux (Ap-

pendix A).

The env and env* properties declare environment variables initialized using

port and tag names, therefore exporting the port/tag values out of the launcher

to the relevant processes and/or EPs. The env* property also grants the receiv-

ing process privilege with respect to the named ports. Figure 5.2.1 shows that,

when a new EP is initialized and the WORKER PORT is initialized for it, the

environment variable “WRPORT” is set for the new EP with the value of the

newly created port. By using the env* in this case, the EP would also be granted

privilege with respect to WORKER PORT . Similar to ports, environment vari-

ables can also be used in order to pass the values of regular Asbestos tags to

processes and EPs if the application protocol requires it.

After all ports have been created and their ownership is passed to their re-

spective owners, each application component is informed of significant port values

through the relevant environment variables—whose values were properly set by

the launcher—and therefore knows all ports it needs to listen or send to.
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Process Tracking label Clearance label

A {a3,1} {a3,2}
B {a′ ⋆,1} {a3,2}
C {1} {2}

A {1} {2}
B {1} {c′ ⋆,2}
C {c′ ⋆,1} {c′ 0,2}

A {c′ 2,1} {2}
B {c′ ⋆,1} {2}
C {c′ ⋆,1} {c′ 1,2}

Table 5.7: Three label setups implementing a circular communication pattern
by granting extra privilege where necessary: A can communicate with B, B can
communicate with C, but A is not allowed to communicate (directly) with C. In
all three cases (each of them essentially corresponding to a different compartment
default for A or C) B needs to hold extra privilege to avoid contamination and
maintain the ability to communicate with C even after it has received information
from A.

5.3 Discussion

Our language is able to express all possible pairwise communication patterns,

including patterns that have no sensible mandatory DIFC equivalents. For ex-

ample, information flow generally obeys a transitive property: if A can send to

B, and B can send to C, then A can send directly to C. But in the case where

there is a restriction in the cycle, DIFC systems require the exercise of privilege

to avoid the potential effects of transitive contamination: Asbestos can prevent A

from sending directly to C only if B is trusted not to transfer its right to send to

C. This leaves the preservation of the communication pattern at B’s discretion,

granting privilege as required to implement a policy. This is necessary in DIFC

systems in order to make the B “immune” to the contamination preventing A

from communicating with C, and our parser implements this behavior. In this

case the intermediate process B is acting as a declassifier between A and C—

and therefore B is a privileged entity. Table 5.7 presents possible label setups
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Process Tracking label Clearance label

A {a3,1} {a3,2}
B {1} {a3,2}
C {1} {2}

A {1} {2}
B {1} {c′ 0,2}
C {c′ ⋆,1} {c′ 0,2}

A {c′ 2,1} {2}
B {1} {2}
C {c′ ⋆,1} {c′ 1,2}

Table 5.8: The three labels setups of Table 5.7 implemented without granting
extra privilege. In all three cases B is able to communicate with C as long as it
hasn’t received any information from A. Once B receives A’s messages, transitive
contamination will prevent communication with C.

that implement our example. In all three cases, B is granted privilege necessary

to ensure that it will not lose its ability to communicate with C, while always

enforcing the requirement that A should not be able to send data to C directly.

If no additional privilege is granted in such communication patterns, processes

are necessarily left susceptible to contamination with respect to the compartments

in question. In the previous example this would mean that B would be able to

communicate with C as long as it hasn’t received any message from A. Once A

sends a message to B, then B would become contaminated with the same type

of privilege that prevents A from communicating with C. From an IFC point of

view, this behavior not only is acceptable, but could also be considered desired.2

In our policy language,≪ and≫ communication operators support this pattern.

Table 5.8 presents possible label setups that implement our example without

granting B special privilege.

Furthermore, our language attempts to simplify policy description, but does

2This prevents processes from leaking information through a “proxy”—like B in this exam-
ple.
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not seek to replace Asbestos labels. If we find that labels are subsumed by our

policy language, then there might be no need for labels. Currently, though, our

language cannot capture the full expressiveness of labels. For instance, a process

may participate in multiple different policies, each of which is depicted on its

labels. The combination of all policies defines the process’s final behavior. Our

policy description language is able to define each policy separately, but can not

replace the globally enforced process labels in IFC tracking. Although we have

achieved label operation performance capable of supporting realistic applications,

such as the AWS, it will require significant effort before the policy language is

optimized enough to reach similar performance levels. Nevertheless, our policy

language can already use communication relationships to represent fairly com-

plex policies including parameterized event process and interactions with existing

compartments and processes that are external to the application.

5.4 Experiences and Evaluation

In order to evaluate our policy language, we want to demonstrate how it could

aid the development of DIFC applications, by simplifying policy definition and

implementation. We use examples previously presented by DIFC systems such as

Asbestos, HiStar, and Jif.

Our policy language parser and launcher are implemented in Python. The ac-

tual runtime cost of parsing and launching policy configurations is minimal, even

in the case of long, complex policies, but is currently hampered by large Python

startup costs on Asbestos. This is primarily because during startup Python at-

tempts to load a large number of libraries that have not been ported to Asbestos.

Additionally, our untuned file-system implementation further increases Python

initialization. Since the running time of the parser is minimal once the Python
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interpreter has finished initializing, we could solve this issue by addressing the

reasons that delay Python initialization.

We have used our policy language to describe several interesting DIFC policies,

and were able to produce equivalent Asbestos label setups. Although no static

policy language could describe every dynamic information flow policy, our policy

language’s ability to express a range of previously presented policies, including

challenging ones, indicates its fitness for practical and user-friendly information

flow policy specification.

Our simplified version of the AWS policy presented in Figure 4.1 is based on

our implementation of the full Asbestos Web server policy in our policy language,

presented in Appendix A. This was a challenging exercise since the policy uses all

1 comp W { default < }

2 exec worker1 worker2 {

3 bin /okws-login login

4 bin /okws-view view

5 belongs W

6 port WP { type open }

7 port WV { type open }

8 dynexec USER {

9 source demux

11 default !

12 belongs (env USER_S USER_R default <)

13 file /ep-configs/user-tmpl

14 port WORKER_PORT { type open }

15 port UG {

16 type restricted

17 owner parent

18 belongs (env USER_S USER_R default <)

19 }

20 env* NETPORT=port:NETROOT

21 env WRPORT=port:WORKER_PORT

22 env* DPORT=port:DEMUX_USERP # port to D

23 env* UG=port:UG

24 }

25 env SELFPORT=port:WP

26 env* DBP=port:DBP # port to database proxy

27 env MYVERIFY=port:WV

28 env DEMUXPORT=port:DEMUX_USERP

29 }

Figure 5.4: Part of the AWS policy description showing the declaration of the
compartment and executables for two AWS workers. Both worker executables
make use of EPs.
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of Asbestos’s features, including event processes, to provide both system-based

information flow isolation and high performance. As described in Section 3.5, each

of the AWS worker processes implements a different Web service by using a sepa-

rate EP per user, in order to achieve isolation while avoiding over-contamination.

In this example we make use of the dynexec directive to describe worker EPs. Our

full implementation of the AWS policy also includes all executables and ports re-

quired for the application. Using our policy description in conjunction to our

policy launcher, we were able to remove the need for the 511-line long special-

ized AWS launcher previously used for label initialization and process spawning.

Also, we have identified at least 28 additional policy related operations in various

places inside the AWS code that are not required if we use our language for policy

management. Figure 5.4 presents the part of the AWS policy that declares the

Web server worker processes which utilize EPs to handle user connections. The

full policy description is presented in Appendix A.

Using its Unix compatibility layer, HiStar [ZBK06] can run the ClamAV anti-

virus program, ensuring no leakage of private data even if the ClamAV processes

become compromised. The main ClamAV process may receive information from

the rest of the system (for instance, it may read a virus database), but it is

prevented from exporting information so as to avoid leaks (lines 3 and 15–20).

It also has clearance to receive information contaminated with respect to the

calling user (line 40), but doesn’t hold the user privilege required to modify user

data. The same applies to the helper processes it spawns. It also utilizes a private

/tmp directory that contains sensitive user data related to ClamAV, and therefore

carries both user and ClamAV contaminations (lines 25–30). Finally, a privileged

process can declassify information out of the ClamAV compartment and send it

to a terminal (lines 4, 7–12 and 38–39). HiStar uses a specialized launcher to run

the ClamAV anti-virus program, the 110-line long wrap process. This process sets
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up the application’s policy. The ClamAV anti-virus policy example expressed in

our policy configuration language is described in 40 lines (Figure 5.5). Just as

wrap can protect processes other than ClamAV, so simple changes to Figure 5.5

can protect different executables; in a sense, Figure 5.5 is a generalization of

wrap’s policy.

1 # We first declare the three compartments

2 comp USER { env USER_S USER_R default ! }

3 comp AV { default < }

4 comp PRINTER { default <> }

5

6 # Executable declassifying output to the tty

7 exec tty_printer {

8 belongs PRINTER

9 port PRINTER_PORT { type restricted }

10 env MYPORT=port:PRINTER_PORT

11 env AV_PORT=port:CLAMAV_PORT

12 }

13 # ClamAV process. Also spawns helper process

14 # belonging in same compartments

15 exec avscanner {

16 belongs AV

17 port MAIN_AV_PORT { type restricted }

18 env MYPORT=port:MAIN_AV_PORT

19 env PRINTER_PORT=port:PRINTER_PORT

20 }

21 # Process modeling private /tmp folder.

22 # Could be replaced by labeled FS

23 # This process also belongs to the

24 # externally initialized user compartment

25 exec private_tmp_file_server {

26 belongs AV USER

27 port TMP_PORT { type restricted }

28 env MYPORT=port:TMP_PORT

29 env AV_PORT=port:MAIN_AV_PORT

30 }

31 # Process modeling private user data.

32 # Could be replaced by labeled FS

33 exec user_data_server {

34 belongs USER

35 env AV_PORT=port:MAIN_AV_PORT

36 }

37

38 AV <> PRINTER

39 USER <> PRINTER

40 USER > AV

Figure 5.5: HiStar’s ClamAV security policy implemented using our policy lan-
guage.

HiStar also presents a VPN isolation example. This example assumes that a

user is simultaneously connected to both the Internet and a virtual private net-
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work (VPN), using two separate network stacks and two browser instances (one

for each network). A VPN client is placed between the two networks, holding

privilege to forward information from the one to the other only when the user ex-

plicitly allows it—for instance, after a file from the Internet has been checked for

viruses or after a file from the private network is verified to be non-confidential.

Figure 5.6 shows a similar, but more restrictive policy configuration (we com-

pletely disallow browser and IP stack instances from interacting with the rest of

the system). Information can escape from one network to the other only if the

VPN client declassifies it.

1 # We declare the five compartments

2 comp VPN INTERNET INTERNET_IPSTACK { default < }

3 comp VPN_CLIENT { default <> }

4 comp NETD { default ! }

5

6 # Both the vpn browser and the vpn IP stack

7 # belong to VPN

8 exec browser_vpn ipstack_vpn { belongs VPN }

9 exec browser_internet { belongs INTERNET }

10 exec ipstack_internet { belongs INTERNET_IPSTACK }

11 exec vpn_client { belongs VPN_CLIENT }

12 exec netd { belongs NETD }

13

24 VPN_CLIENT <> VPN

25 VPN_CLIENT <> INTERNET_IPSTACK

26 INTERNET_IPSTACK <> INTERNET

27 INTERNET_IPSTACK <> NETD

Figure 5.6: A policy similar to HiStar’s VPN isolation, implemented using our
policy language.

Another interesting policy we were able to express was Jif’s [ML00] medical

study example. In this scenario a hospital (modeled on line 3 of Figure 5.7 by

an external compartment) possesses patients’ personal data. This data should

be anonymized using a data extractor process E and then forwarded to a group

of researchers R. To process patient information the researchers use a statis-

tical package SP that accesses a database DB with statistical methods. The

researchers should also be able to export the results to an output OUT , modeled
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as an outside compartment. In this policy we primarily want to ensure that no

patient data leak to the outside world (even if application modules have bugs),

and secondarily ensure that only the statistical package has access to the confi-

dential statistical database. Unlike the Jif solution, Figure 5.7 does not provide

isolation at the granularity of application variables, but it still achieves the goal

of protecting against leakage of patient data.

1 # The external compartment the

2 # "hospital" process belongs to

3 comp H { env HOSPITAL_S HOSPITAL_R default <> }

4 # Compartments for data extractor, researchers,

5 # statistics package, and DB

6 comp E R SP DB { default ! }

7 # Compartment for the process that

8 # outputs results of study

9 comp OUT { env OUT_S OUT_R default <> }

10

11 E <> H

12 E > R

13 R <> SP

14 SP <> DB

15 R > OUT

Figure 5.7: A policy configuration implementing the security model of the Jif
medical example. For brevity we omit executable declarations.

5.4.1 Discussion

Although our work and evaluation focussed primarily on Asbestos, our goal is

to propose system management mechanisms able to improve the DIFC program-

ming model. As presented in more detail in Chapter 2, we believe that our policy

language can have applications to other DIFC systems, apart from Asbestos.

Systems that use Asbestos labels to implement DIFC—such as HiStar [ZBK06]

and Flume [KYB07]—can make direct use of the policy language and the As-

bestos label setups it produces. For instance, the Asbestos labels produced by

our parser for the HiStar example applications could be used directly to imple-

ment these policies in HiStar. Porting our application launcher though would be
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more challenging, since its implementation is system specific.

5.5 Policy Language Translation Correctness

We aim to show that the label translations performed by our parser implement

the desired communication patterns. When using the term “external compart-

ment”, we refer to a compartment that has been declared and initialized outside

the policy description and may or may not be used within the policy description

(using the policy language support for “external compartments”). The term “in-

ternal compartment” refers to compartments declared and initialized within the

policy description code.

Lemma 1: Given two processes A and B, where A is contaminated with tag a

at level 2 or level 3. Then after B receives a message from A, one of the following

holds:

• B is contaminated with a at the same level.

• B has privilege for a.

Proof: This statement follows from the basic Asbestos label check and the fact

that contamination in Asbestos is transitive. The communication rules enforced

by the Asbestos kernel, presented in Figure 3.2, dictate that when process B

receives a message from process A, then B’s tracking label will be updated based

on the following rule: TB ← (TB ⊓T−) ⊔ (TE ⊓T⋆
B), where TE = TA ⊔T+.

First let us assume that TB(t) = 1, i.e. B has a at the default level and does

not hold privilege with respect to it. The message sent from A to B can not carry

a T− label giving B privilege with respect to a, since A does hold such privilege
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and, consequently, can not grant it B. Furthermore, for simplicity, we assume

that A is not making use of the message discretionary label T+ to contaminate

B at a level higher than TA(t).

In any of these cases if B does not hold privilege with respect to a (i.e.,

TB(t) ≥ 0), then TB(t) will be set to: TB(t) = max(min(1,3),TE(t)) =

max(min(1,3),max(TA(t),T+(t))) = max(1,max(TA(t), ⋆)) = max(1,TA(t)) =

TA(t)

If B holds privilege with respect to a (i.e., TB(t) = ⋆), then the rules applies

as follows: TB(t) = max(min(⋆,3),min(TE(t), ⋆)) = max(⋆, ⋆) = ⋆.

Therefore, unless B holds privilege with respect to a, it will become contam-

inated at the same level as A with respect to a, once it receives A’s message.

Lemma 2: For any two internal compartments A and B where A can not

communicate information to B (either A < B or A ! B), there exists some tag a

where A is contaminated with a at either level 2 or level 3.

Proof: Our policy parser translates < and ! rules to Asbestos labels based on

the third and second line of translation Tables 5.3, 5.4, 5.5 and 5.6, one for each

of the four possible values of A’s default.

We first examine the labels produced by the parser for A when the rule A < B

is translated, for each of the four possible values of A’s default.

A’s default <> ! < >

A’s tracking label with {a2, a′ 1} {a3, a′ ⋆} {a3, a′ 1} {a2, a′ ⋆}

respect to a and a′

In all cases either TA(a) = 2 or TA(a) = 3.
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Let us now examine A’s labels, as they are produced by the parser when

translating the rule A ! B, for each of the four possible values of A’s default.

A’s default <> ! < >

A’s tracking label with {a2, a′ 1} {a3, a′ ⋆} {a3, a′ 1} {a2, a′ ⋆}

respect to a and a′

Again, in all cases either TA(a) = 2 or TA(a) = 3.

Lemma 3: For any two internal compartments A and B where A < B or A !

B, then a process belonging to compartment B cannot receive a message sent by

any process that belongs to A and is contaminated with A’s tag a at the relevant

level.

Proof: Based on Lemma 2, we know that if process P belongs to A then either

TP (a) = 2 or TP (a) = 3.

Let us now examine the labels generated by our parser for compartment B,

given either of the two rules: A < B or A ! B.

Our policy parser translates < and ! rules to Asbestos labels based on the

third and second line of translation Tables 5.3, 5.4, 5.5 and 5.6, one for each of

the four possible values of A’s default.

We first examine A’s tracking label and B’s clearance label, as generated by

the translation of rule A < B, for all four possible values of A’s default.

A’s default <> ! < >

A’s tracking label with {a2, a′ 1} {a3, a′ ⋆} {a3, a′ 1} {a2, a′ ⋆}

respect to a and a′

B’s clearance label with {a1, a′ 2} {a2, a′ 2} {a2, a′ 2} {a1, a′ 2}

respect to a and a′
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In all cases TA(a) > CB(a) and therefore a process in compartment B can not

receive messages from any processes belonging to compartment A—i.e., contam-

inated with respect to a at the relevant level.

Let us now examine A’s tracking label and B’s clearance label, as generated

by the translation of rule A ! B, for all four possible values of A’s default.

A’s default <> ! < >

A’s tracking label with {a2, a′ 1} {a3, a′ ⋆} {a3, a′ 1} {a2, a′ ⋆}

respect to a and a′

B’s clearance label with {a1, a′ 2} {a2, a′ 2} {a2, a′ 2} {a1, a′ 2}

respect to a and a′

Again, in all cases TA(a) > CB(a) and therefore a process in compartment B

can not receive messages from any processes belonging to compartment A—i.e.,

contaminated with respect to a at the relevant level.

Lemma 4: For any two internal compartments A and B where A < B or A ! B,

assume B receives information from A via some chain of external compartments

A → C0 → C1 → · · · → Cm → B. Then at least one of the Ci has privilege for

A’s tag a.

Proof: Lemma 4 follows from Lemma 1, Lemma 2 and Lemma 3: According

to Lemma 2, the existence of either rule A < B or rule A ! B means that A is

contaminated with a at either 2 or 3 Let as assume that none of the external

compartments Ci holds privilege with respect to A’s contamination tag a. Then,

when A sends a message to external compartment C0, according to Lemma 1, C0

will become contaminated with a at the same level as A (since lack of privilege

means that C0 can not avoid contamination). Similarly, when C0 forwards the
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message to C1, C1 will become contaminated with A’s contamination. Eventually,

Cm will receive the message from Cm−1 and become contaminated with A a. If

Cm attempts to forward the message to B, sending will fail because, according

to Lemma 3, B can not receive a message carrying A’s contamination.

Therefore, one of the compartments Ci, with 0 ≤ i ≥ m, must hold privilege

with respect to A’s contamination.

Lemma 5: Given a chain of processes A = C0 → D∗0 → C1 → D∗1 → C2 →

· · · → D∗m−1 → Cm−1 → D∗m → Cm = B, where the Ci’s are processes in

internal compartments, and the D∗ are independent, possibly empty, sequences

of processes in external compartments. Assume that information travels from A

to B. Then for every i, 0 ≤ i < m, we must have that either Ci > Ci+1, or Ci <>

Ci+1, or there exists a process in D∗i that has privilege for A’s contamination tag.

Proof: This follows by using Lemma 4 for each sub-chain Ci → D∗i → Ci+1.

More specifically:

Let as assume that for sub-chain Ci → D∗i → Ci+1 there is no process in D∗i

holding privilege with respect to A’s contamination tag, and the rule between Ci

and Ci+1 is neither Ci > Ci+1 nor Ci <> Ci+1. Then the rule between Ci and

Ci+1 is either Ci < Ci+1 or Ci ! Ci+1, and any communication of information

from Ci to Ci+1 is impossible (goes against Lemma 4). Therefore, either there is

a process in D∗i holding privilege with respect to A’s contamination tag, or the

rule between Ci and Ci+1 allows Ci to communicate information to Ci+1.

Lemma 6: For any two internal compartments A and B where A <> B or

A > B, then, immediately after labels are assigned by the launcher, B can receive

a message sent by any process contaminated with A’s tag a at the relevant level.
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Proof: Let us examine the labels generated by our parser for compartments A

and B, given either of the two rules: A <> B or A > B.

Our policy parser translates <> and > rules to Asbestos labels based on the

first and fourth line of translation Tables 5.3, 5.4, 5.5 and 5.6, one for each of the

four possible values of A’s default.

We first examine A’s tracking label and B’s clearance label, as generated by

the translation of rule A <> B, for all four possible values of A’s default.

A’s default <> ! < >

A’s tracking label with {a1, a′ 1} {a3, a′ ⋆} {a3, a′ 1} {a1, a′ ⋆}

respect to a and a′

B’s clearance label with {a2, a′ 2} {a3, a′ 2} {a3, a′ 2} {a2, a′ 2}

respect to a and a′

In all cases TA(a) ≤ CB(a) (and of course TA(a′) ≤ CB(a′)—since a′ is only

used to affect A’s receiving ability) and therefore a process in compartment B

can receive messages from any processes belonging to compartment A.

Let us now examine A’s tracking label and B’s clearance label, as generated

by the translation of rule A > B, for all four possible values of A’s default.

A’s default <> ! < >

A’s tracking label with {a1, a′ 1} {a3, a′ ⋆} {a3, a′ 1} {a1, a′ ⋆}

respect to a and a′

B’s clearance label with {a2, a′ 2} {a3, a′ 2} {a3, a′ 2} {a2, a′ 2}

respect to a and a′

Again, in all cases TA(a) ≤ CB(a) and therefore a process in compartment B

can receive messages from any processes belonging to compartment A.
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Theorem: Assume internal compartment A can communicate information to

internal compartment B. Then either there exists a chain of compartments A =

C0 → C1 → · · · → Cm = B in the configuration language that allows this

communication, or there exists an external compartment with privilege for A’s

tag.

Proof: Using Lemma 5, we know that if information is communicated from A

to B, then there must through a chain of compartments A = C0 → D∗0 → C1 →

D∗1 → C2 → · · · → D∗m−1 → Cm−1 → D∗m → Cm = B such that for every i,

0 ≤ i < m, we must have that either Ci > Ci+1, or Ci <> Ci+1, or there exists a

process in D∗i that has privilege for A’s contamination tag. If every sequence of

external compartments D∗i is empty (i.e., no external compartments participate

in the chain), then—according to Lemma 5— for every pair of internal compart-

ments Ci, Ci+1 there must exist a rule allowing information to be communicated

from Ci to Ci+1. Otherwise, if Ci and Ci+1 are connected by rule Ci < Ci+1 or rule

Ci ! Ci+1, Lemma 5 implies that a process belonging to D∗i must hold privilege

with respect to A’s contamination tag.

5.6 Summary

Although correct policies are critical for the security of DIFC applications, the

current DIFC programming model requires developers to perform these tasks

at the Asbestos label level, making policy management challenging and error-

prone—even in the case of relatively simple policies, like the one presented in

Figure 4.1. We have identified certain practical reasons that make it hard for de-

velopers to perform policy management, including expressing policies directly at

the code level, having to spread policy implementation in multiple code locations
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and difficulty in reading, sharing and reasoning about the policy implementation.

These issues, though important, are overshadowed in our experience by another

problem: developers understand and model policies in terms of communication

patterns, not labels.

We have proposed a policy description language that allows developers to

describe application policies in terms of pairwise communication rules between

application and system components. In particular, our policy language achieves

multiple important goals that simplify policy management and therefore improve

the DIFC programming:

• it allows developers to model policies as allowed and forbidden communi-

cation patterns expressed as pairwise communication rules

• it concentrates policy specification into one place, making policies easier to

write and reason about

• it supports policy parameterization through the use of environment vari-

ables and file system pickles

• it models Asbestos event processes

• it models important runtime application properties such as communication

ports

• it is translated to equivalent Asbestos label configurations by our language

parser at reasonable runtime cost

• it supports application instantiation using our policy launcher

Our experience using the language shows that it is able to significantly im-

prove the development experience in Asbestos by simplifying policy management
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and the likelihood of bugs. The implementation of policy examples from other

DIFC systems, such as HiStar, demonstrates that our policy language can find

applications to DIFC systems other than Asbestos, and contribute in improving

their programming model.
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CHAPTER 6

Debugging Mechanisms for Asbestos

Although the policy description language helps implement correct policies, it is

hard to eliminate all development errors causing policy-related bugs, such as

improper declassification, lack of necessary privilege or clearance, or processes

getting contaminated improperly. These bugs usually manifest themselves as label

errors and—from the kernel’s point of view—as attempts to violate information

flow rules indistinguishable from genuine attempts to break system policy. Even

in the absence of label errors, while developing for Asbestos we had to resolve

other, more traditional types of bugs that caused unexpected process death, such

as system call failures (e.g., due to bad arguments) or null pointer dereferences.

Debugging mechanisms in a conventional development environment assume free

access to system and application state. But Asbestos’s strong isolation guarantees

complicate the programming model and make application development harder.

For instance, the Asbestos Muenster application [BEK07] shows that Web ser-

vices can be built from untrusted components. But how can those components be

built? In a conventional development scenario, a service programmer builds their

service using private infrastructure, such as a development server, over which they

have full control. When things go wrong with the service, the programmer can

examine the entire machine, including error logs, console, and process memory.

Even when physical access to the machine is not possible, developers may collect

and expose debugging information (e.g. through the Web browser) without any
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information flow restrictions. Gathering and exposing information such as stack

traces, system call traces, file operations, and communication behavior can be

done with few or no restrictions.

The Muenster development model changes this significantly. An untrusted

developer’s Muenster service runs in an environment owned and built by other

developers, who may not make their code public. We previously performed most

of our debugging by exercising our access to the Asbestos console, where we could

inspect all related messages printed by the kernel. Of course, unprivileged service

developers cannot be allowed to utilize this gigantic channel, or any type of similar

global privilege (e.g. conventional OSes’ root user privilege). Instead, service code

is constrained to follow stringent security policies, which often prevent that code

from exporting information, including debugging information such as backtraces

and error logs. This problem is unique to information flow controlled systems. In

the presence of DIFC, debugging is rendered challenging because the ability to

gather system information is restricted by policy rules.

Exposing debugging information to developers almost always causes debug-

ging data to flow between compartments. As with any other data exchange be-

tween compartments, debugging messages generated by the system must not

violate policies enforced by Asbestos DIFC. Our goal was therefore to develop

useful debugging facilities whose information flow behavior cleanly maps onto

Asbestos’s existing DIFC model, and especially its privilege model.

The local channels of decentralized privilege did guide our design, however.

Without console access, an Asbestos developer might gain debugging visibility

by spreading privilege more widely than usual. For example, the application’s

components might get privilege for the tags corresponding to a special “debug

user.” This widespread privilege would relax communication restrictions for the
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corresponding tags, giving debuggers better visibility into application behavior.

Of course, privilege would also change application behavior; to be useful for de-

bugging, the application itself would emulate the unprivileged behavior, reporting

any errors it observed.

Although this hypothetical system would present implementation difficulties,

such as correctly emulating unprivileged behavior at user level, it would clearly

fit into Asbestos’s DIFC model. Inspired by this analogy, we introduce the debug

domain [EK08] primitive and present a system that utilizes kernel extensions to

provide similar behavior as the hypothetical system, but with much better ease

of use. The result cleanly fits debugging into Asbestos DIFC.

6.1 Label Errors

The high frequency and importance of label errors for Asbestos development

make them a good working example for DIFC debugging. Let us consider a pro-

grammer trying to develop a new network service for AWS whose code appears in

Figure 6.1. The programmer has no console access and the network terminal (i.e.

telnet or Web browser) is her standard output. The user first creates the new tag

mytag (i.e. a new compartment), used to protect her private data (line 6). Then

the user creates a new file to store the private application data and sets the file

labels so that readers get contaminated to {mytag 3} and writers need to have

{mytag ⋆} (line 7). Then the user drops the tag from her send label (line 8). This

is done for two (hypothetical) reasons: first, she doesn’t need to hold “unneces-

sary” privilege, and second she wants to keep the process’ send label as short as

possible for performance. In this block of code, the user would run into a number

of problems. The first bug is on line 14: the user drops tag mytag prematurely.

The user is able to read the secret file (since she granted herself clearance to do so
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1 void

2 worker_init(char ** argv, int argc) {

3 tag_t mytag;

4

5 /* create new tag and use it to contaminate private file */

6 sys_new_tag(&mytag, "my secret port");

7 writefile(priv_file, Contamination={mytag 3, 1}, Clearance={mytag *, 3});

8

9 /* allow ourselves to access contamination {mytag 3} (i.e. read file) */

10 self_give_clearance(mytag, 3);

11 ...

12

13 /* prematurely drop {mytag *} privilege */

14 sys_tag_drop_privilege(mytag);

15 r = http_output("Initialization: success!");

16 ...

17 return;

18 }

19

20 int

21 main(int argc, char ** argv) {

22 worker_init(argv, argc);

23 ...

24 /* by reading file, we get contaminated with {mytag 3} since we dropped privilege */

25 read_from_my_file();

26

27 /* {mytag 3} contamination may not escape to the network. LABEL ERROR! */

28 http_output(input);

29 ...

30 }

Figure 6.1: Block of C-like code demonstrating possible bugs when developing for
Asbestos.

on line 10), but she has dropped privilege to declassify information with respect

to mytag. Reading the file gets her process contaminated to {mytag 3}. This

prevents the process from being able to communicate with the outside world—in

this case sending the HTTP response to the user’s browser, on line 28. Due to this

bug, the attempt to read the secret file on line 25 renders the process unusable,

producing a label error the moment the user tries to use the service, since the

process is lacking mytag privilege in order to remain unaffected from reading the

secret the file and retain its ability to communicate with the network. When this

label error occurs the remote user/developer will have no indication as to what

went wrong. We would like the developer to be able to receive some kind of notice

for the label error caused by the lack of declassification privilege with respect to
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mytag.

An error like the one presented in Figure 6.1 will be treated as any other label

error—that is, as an attempt to violate information flow rules—and information

about the error, including its very existence, is concealed by the Asbestos ker-

nel. This makes it particularly difficult for an unprivileged application developer

to diagnose and fix the bug. It would be very helpful if the system provided

information such as:

• The source and destination of the message that caused the label error;

• Identifying message details (e.g., its type and ID);

• The tag/port that caused the label error (also referred to as the “faulting

tag”);

• The levels of the faulting tag in the sender’s tracking label and the receiver’s

clearance label; and

• The particular type of label error.

A message containing this information conveys to its recipient information from

both the sender’s and receiver’s compartments, such as the type of label error and

the faulting tag level on both sides’ labels. For instance, if the sending process

P was informed that the message was not delivered to the destination process Q

because P ’s contamination level with respect to the faulting handle was higher

than Q’s clearance, then information about Q’s clearance is revealed to P . Simi-

larly, if Q is informed that it was not able to receive a message sent to it because

its clearance with respect to the faulting handle was insufficient, then informa-

tion about P ’s contamination is revealed to Q. Therefore, in order to preserve

91



information flow, each debug message should also carry both processes’ contami-

nations. This will ensure that the message may only be received by processes that

have clearance to receive information from both the sender and the destination

of the offending message.

In IFC terms, collecting debugging information belonging to various compart-

ments requires privilege to declassify information with respect to those compart-

ments. The data isolation properties application security policies are provide aim

to reduce the amount of privilege each application developer holds. Consequently,

the declassification of useful debugging information out of the relevant compart-

ments is almost always impossible for developers, because the privilege they hold

is inadequate.

However, being able to debug policy errors is essential for making the improv-

ing the DIFC programming model and therefore we need to provide a way for

developers to exercise privilege in a limited, controlled way, only for debugging

purposes. Essentially, we want to create a new type of debugging privilege, which

will represent the ability to declassify debugging information with respect to a

set of tags. The developer will exercise this privilege by granting the application

debugging privilege over a set of application tags, such as the tags corresponding

to a fake user intended only for debugging, or a user-private tag representing a

subcompartment—such as the one represented by mytag. When an error occurs,

the system will search for error information subject to debugging privilege and

report any such information to the relevant debugger process or processes. How-

ever, to maintain proper information flow control, the kernel appropriately labels

the debugging information; in the case of the label error, the resulting label is

TP ⊔TQ, which combines both P and Q’s tracking labels. If P and Q are in the

process of being debugged it’s likely that their labels consist of tags for which the
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debugger has debugging privilege. A debugging process will only see the informa-

tion if allowed, but since P and Q’s labels will generally consist of tags subject

to debugging privilege, issues with hidden errors will likely not arise.

Each application should be able to manage its own set of debugging privilege

instances. Managing each of these instances modulates the amount of information

that would be released through the debugging mechanism and is therefore consid-

ered a security-sensitive operation that should require explicit relevant privilege.

Furthermore, label-error debug messages contain information about the fault-

ing tag. Since label rules in Asbestos are kernel-enforced, only the kernel holds

information such as the details and nature of a label error required to form the

relevant debug messages when necessary. Reporting debugging information for a

label error caused by a tag mytag is equivalent to declassifying information out

of mytag’s compartment. Therefore, instructing the kernel to report such label

errors should require privilege with respect to mytag, to ensure that information

flow control rules are not violated.

The privilege requirements of the debugging mechanism suggest that, follow-

ing Asbestos’s decentralized privilege management principles, debugging should

allow each application to create and manage its own instances of the debugging

primitives in a decentralized fashion.

To achieve these goals we implemented a new primitive called debug domains

as the primary mechanism to facilitate decentralized debugging, while preserving

information flow semantics.
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6.2 Asbestos Debug Domains

The debug domain (DD) primitive represents debugging privilege and attempts

to address DIFC’s debugging challenges. A DD models three types of privilege:

• The privilege to declassify debugging information with respect to certain

compartments;

• The privilege to receive such information; and

• The privilege to manage this mechanism.

In essence a DD specifies to the kernel what tags should generate debugging

messages and which processes should receive those messages. DDs may address

a number of different debugging problems sharing three basic characteristics:

• They are triggered by a specific type of event, such as a label error;

• They involve a specific set of triggering tags, such as a set of potential

faulting tags; and

• all parties that hold the appropriate debugging privileges and have declared

interest in such events should receive debugging messages when such events

occur.

The primary element of a DD is a collection of tags called DD member tags, or

simply members. The DD represents privilege to debug with respect to its mem-

bers, essentially representing privilege to declassify debug information—with re-

spect to members—to anyone able to receive debug messages from that particular

DD.
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p1, p2, p3, ... , pK
set of K connected ports

Modifiable only
by processes that

ddt

ddt flags

set of N member tags
t1, t2, ... , tN

have { ddt * }

Figure 6.2: A debug domain represented by tag ddt, including its member tags,
connected listening ports, and flags (debug domain properties). Modifying any
debug domain property requires privilege with respect to ddt. Adding a mem-
ber tag or a new connected port also requires privilege with the tag/port being
added/connected.

Holding privilege over the DD gives a process the right to manipulate its

member list and the right to connect listening ports to the DD. By connecting

a listening port to a DD, a process instructs the DD to send debug messages to

that port when bugs involving one (or more) of the DD members occur. Each

DD can have an arbitrary number of listening ports, as well as an arbitrary

number of member tags. Apart from privilege over the DD, adding member tags

and/or connecting listening ports also requires privilege over the tags/ports that

are being added/connected. By requiring privilege over all relevant tags in order

to manipulate a DD we bring debugging privilege into the label system as an

instance of an already-existing privilege.

Privilege is also required to modify the properties of a DD, such as the types

of events that are being monitored and the parties that will be notified when

such events are triggered (the owner of the DD, the sender of the message that

triggered the event, the recipient of the message, or any combination of the three).

However, processes that receive messages sent to listening ports need not have

privilege for the DDs to which those ports are connected. Figure 6.2 illustrates

a debug domain represented by tag ddt.
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Any process may create an arbitrary number of DDs, whose members may

or may not be disjoint; any tag may be a member of multiple DDs. A process’s

ports may be connected to multiple DDs.

6.3 Implementation

Like any other entity and resource in Asbestos, a debug domain is represented by

a special tag type. A DD tag ddt represents a single DD and is used to manage

its associated member tags and listening ports. ddt is created by calling the

sys new tag() system call with the appropriate arguments instructing the kernel

to create a new DD tag and initialize it to represent a new, empty DD. The

caller of sys new tag() gets privilege with respect to the newly created tag and

therefore the creator of the DD holds privilege over it and may exercise it to

manage the DD’s properties through calls to sys debug ctl(). Adding new member

tags and connecting new ports to a DD not only requires privilege with respect

to the DD ({ddt ⋆}), but also requires privilege with respect to the tags/ports

being added/connected. The latter requirement is necessary because adding a

new member tag mytag to a DD instructs the kernel to declassify debugging

information with respect to mytag’s compartment, and {t ⋆} should be required

to do so. Similarly, when connecting a new port myport to a DD, it is important

to hold privilege over myport before its receiving behavior is changed significantly

by allowing debug messages to be sent to it.

The DD primitive is used in conjunction with different types of triggering

events to implement different types of debugging applications. Our example ap-

plications include:

• Label error debugging, using label errors as triggering events.
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• System call debugging: using issuing of system calls as triggering events,

we generate debug messages containing information about the system call,

its caller and its results.

• Label history debugging: using label changes as triggering events, we gen-

erate debug messages that contain the label delta.

• Process exiting: using a process’s death as triggering event, we generate a

debug message that informs processes that may be interested in this event

(e.g., processes that have called wait() on that process).

A DD’s flags are passed at creation time and specify DD properties, such as

the types of triggering events DD members will be monitored for. For instance, a

DD whose flags indicate that only label errors due to member tags are to be used

as triggers, will not be considered for system call tracing debug messages—even

if the system call trigger involves one of the DD members. A DD’s flags may

indicate more than one triggering event types the DD is interested in, instructing

the kernel to consider it for multiple types of debug messages.

Each triggering event is handled by a wrapper function responsible for that

type of error. Each event type asks for different kinds of handling. The application

of debug domains to a class of triggering events mainly involves writing a new

wrapper function to the debug device operations. The wrapper function performs

the pre-processing of the event, formats the debug message payload, calculates

the appropriate contamination the message should carry for this triggering event,

decides what processes are supposed to get the message, and forwards the message

to the lower level DD functions for delivery. The implementation is completed by

inserting appropriate calls to the new wrapper function in the relevant positions

of the kernel code.
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Eventually, wrapper functions generate and send debug messages to all appro-

priate destination ports. Sending a debug message involves the following steps:

1. Check that the relevant process has declared interest in this type of event.

If not, return.

2. Iterate over the debug domains of which the faulting tag (i.e., the tag/port

that triggered the event) is a member. Discard the domains whose flags

indicate that they are not monitoring the event type in question.

3. For each remaining debug domain, investigate its listening ports. If the port

belongs to one of the processes that are supposed to be notified, generate

and send a debug message to that port. For instance, if the DD flags specify

that the sender of the relevant message must be notified, the debug message

will be sent to any listening ports belonging to the sender. Other possible

recipients include the destination of the message and the owner of the debug

domain.

Figure 6.3 presents a pseudo-code outline of the way the debug domain kernel

mechanism functions when a triggering event occurs.

The most sensitive aspect of writing a debug wrapper function is identifying

the proper label that needs to be attached to the message. Based on the circum-

stances under which the triggering event occurs and the payload of the generated

message, the wrapper function needs to ensure that the debug message carries

the contamination of all processes (explicitly or implicitly) involved. Our appli-

cations of debug domains in Section 6.4 demonstrate examples of debug message

contamination.

Our implementation of DDs and their applications involved numerous changes

in the Asbestos kernel. First, we implemented debug domains as a special tag
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1: wait for trigger;

2: if DDs are enabled:

3: identify faulting tag;

4: if faulting tag member of any DD:

5: generate debug message;

6: for each DD d the faulting is member of:

7: if d monitors the trigger type in question:

8: for each port p connected to d:

9: if p can get debug messages for trigger type:

10: send debug message to p

11: else:

12: continue;

13: else:

14: continue;

15: else:

16: goto 1; // (i.e., ignore trigger)

17: else:

18: goto 1; // (i.e., ignore trigger)

Figure 6.3: The reaction of the debug domain kernel mechanism when a new
triggering event occurs. Note that these operations are performed only if the
Asbestos kernel has been compiled with debugging enabled.

type, able to keep track of member tags, connected ports and all necessary DD

properties. Additionally, we implemented wrapper functions using DD function-

ality, identified kernel execution states that require debug message generation for

each of the triggering event types and inserted calls to the wrapper functions—

passing appropriate kernel state as arguments—at the relevant positions in the

kernel code. Furthermore, we implemented new system calls necessary to create

and manage debug domains.

At user level, we implemented the necessary interfaces (mostly system call

wrappers) that allow developers to easily create and manage DDs as well as

higher-level library calls that implement DD applications and system services,

such as DIFC-safe system call tracing (strace()) and debugging libraries described

in Section 6.4. Table 6.1 summarizes the major debug domain operations and

indicates the privilege requirements for each of them.

99



Operation Function Privilege Privilege
Required Granted

Create a DD sys new dd(flags) None Privilege over
(calls sys new tag() new DD

(caller gets
{ddt ⋆})

Add members sys debug control(DD, t1, t2, . . . , tN) Privilege with None
or where t1, t2, . . . , tN respect to the DD
connect is the list of tags/ports and new members
ports to be added/connected or/and ports
Remove sys debug control(DD, t1, t2, . . . , tN) Privilege with None
members or where t1, t2, . . . , tN respect to the DD
disconnect is the list of tags/ports and removed
ports to be removed/disconnected members and/or

ports
Change DD sys debug control(DD, flags) DD privilege None
properties
(flags)
Destroy a DD sys destroy dd(DD) DD Privilege None

(calls
sys tag dissociate(DD))

Table 6.1: Debug domain creation and management operations. Notice that cre-
ating and destroying a DD is performed by creating and dissociating the relevant
(special DD) tags. Consequently, destroying a DD does not necessarily destroy it,
since all Asbestos tags (including those representing DDs) are reference counted.

6.4 Applications

Label Error Debugging Label error debugging uses DDs to provide useful

information about label errors. Each such debug message contains information

about the type of the label error, the faulting tag, the source and destination of

the faulting message, and the level of the tag in the sender’s tracking label and the

receiver’s clearance label. (In the presence of more than one faulting tag we would

fault on each of them separately, generating multiple debug messages.) Since this

message is revealing information about the destination (e.g., the destination clear-

ance label with respect to the faulting tag) we need to make sure that it is properly

contaminated: the recipients of such debug messages will carry the contamination
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1 void

2 worker_init(char ** argv, int argc) {

3 tag_t mytag, ddt, myport, debugger;

4

5 /* create new tag and use it to contaminate private file */

6 sys_new_tag(&mytag, "my secret port");

7 writefile(priv_file, Contamination={mytag 3, 1}, Clearance={mytag *, 3});

8

9 /* allow ourselves to access contamination {mytag 3} (i.e. read file) */

10 self_give_clearance(mytag, 3);

11

12 /* create new DD (ddt) & connect myport to it at creation time. Add mytag as a member */

13 sys_new_dd(&ddt, DEBUG_LABELS, &myport);

14 sys_add_member_to_dd(ddt, mytag);

15

16 /* spawn debugger and transfer myport to it, so it can receive debug message from it */

17 spawn_process(&debugger);

18 sys_transfer_tag(myport, debugger);

19 ...

20

21 /* prematurely drop {mytag *} privilege */

22 sys_tag_drop_privilege(mytag);

23 r = http_output("Initialization: success!");

24 ...

25 return;

26 }

27

28 int

29 main(int argc, char ** argv) {

30 worker_init(argv, argc);

31 ...

32 /* by reading file, we get contaminated with {mytag 3} since we dropped privilege */

33 read_from_my_file();

34

35 /* {mytag 3} contamination may not escape to the network. LABEL ERROR! Debug message */

36 /* sent to label error ports connected to all debug domains mytag is a member of */

37 http_output(input);

38 ...

39 }

Figure 6.4: Code example where DDs (used by the debugger) would help diagnose
a bug causing a label error (because of dropping privilege prematurely on line
22).
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Message type Message label

Label-error debugging (TP ⊔TQ) ⊓ {t1 ⋆, t2 ⋆, . . . , tn ⋆, pl ⋆,3}
Syscall tracing TP ⊓ {t1 ⋆, t2 ⋆, . . . , tn ⋆, pl ⋆,3}
Label tracing TP ⊓ {t1 ⋆, t2 ⋆, . . . , tn ⋆, pl ⋆,3}
Process exiting TP ⊓ {t1 ⋆, t2 ⋆, . . . , tn ⋆, pl ⋆,3}

Table 6.2: Labels for messages generated by the four debug domain applications.
⊔ is the least upper bound operator and ⊓ the greatest lower bound operator.
t1, t2, . . . , tn are the member tags of the DD, while pl is the connected port to
which the message will be sent. For label-error debugging process P has attempted
to send a message to process Q; for the other applications, P is the relevant
process.

of both the sender and receiver of the faulting message. For instance, if P tries to

send a message to Q and fails because of a label error, label debugging needs to

examine the faulting tag, determine which processes may receive a debug message

with respect to that tag, and label the message with the least upper bound of P

and Q’s labels, explicitly lowered for debug domain members (since a privileged

process has explicitly permitted debugging—i.e., declassification—with respect

to those tags). The exact contamination carried by the debug message in this

example is presented in Table 6.2.

To make the use of DDs more concrete, we revisit our AWS example presented

in Figure 6.1. Figure 6.4 demonstrates the use of debug domains in order to

facilitate debugging for the problems we diagnosed earlier. Function worker init()

is modified as follows: it creates a debug domain represented by tag ddt and

configured to receive label errors from the kernel (line 13). The port myport

is connected to the debug domain (at creation time), and the “suspect” tag

mytag is added to its members (lines 13–14). This allows the owner of myport to

receive debugging messages whenever a label error in relation to mytag occurs.

A new debugger process is spawned and ownership of myport is transfered to

it (lines 17–18). Similar to Figure 6.1, the new version contains the same bug:
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on line 22 the process mistakenly drops privilege with respect to mytag and

consequently becomes contaminated with {mytag3} when the main function tries

to access the private file on line 33. When the label error occurs during the

attempt to communicate with the network daemon on line 37, the kernel generates

a new label-error debug message and sends it to all subscriber ports connected

to the label-error debug domains that mytag is a member of. In this example, the

message will be sent to myport, which belongs to the debugger. The debugger

has mytag ⋆ privilege, required to declassify messages with respect to mytag, and

therefore can notify the developer about the label error debug message received

because of the forbidden operation on line 37. Figure 6.5 illustrates the kernel

components of the mechanism.

X
Kernel

Netd

p1, p2

kernel
generated by
Debug message

Need privilege over

subscribers:

Message causing label
error due to t

Alice

Message sent to Alice’s

Debug domain (ddx)

myport

mytag
member tags:

subscribers:
connected

member tags:
mytag

connected

Debug domain (ddt)

mytag, t1, t2

ddx to modify

debugger through "myport"

Figure 6.5: When the Asbestos kernel identifies the label error, it checks whether
the “faulting tag” (mytag) belongs to any debug domains whose flags are config-
ured for label error debugging, such as the ones represented by ddt and ddx. The
kernel will sent the generated debug message to all connected subscriber ports:
p1 and p2 from ddx and myport from ddt.
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System Call Tracing We used debug domains to provide users with system

call tracing messages. By adding the special control tag of process Q to a DD

that is configured to use system calls as triggering events, we enable system call

tracing for Q. Debug messages containing information about every system call Q

issues (system call type, arguments passed to it and return value) will be sent to

all ports connected to the DD.

Since these messages directly expose information related to the process that

is being traced (Q), each debug message must carry Q’s contamination, omitting

any contamination related to debug domain members.

Label History and Exiting Processes Policy errors often often manifest

themselves as changes to application processes’ labels that lead to unexpected,

buggy behavior. For instance, dropping privilege with respect to mytag prema-

turely on line 22 of Figure 6.4 leads to a label change ({mytag ⋆} disappears

from the process’s tracking label). In this case as well as in various other cases,

being able to track changes to process labels can provide valuable information for

solving policy bugs. We have used debug domains to facilitate policy debugging

by implementing a mechanism that informs developers of changes to a process’s

labels.

If process P ’s control tag is added to a DD using label modifications as trig-

gering events, “label history” debug messages will be generated every time P ’s

labels change. Each message contains the differences in the label components as

well as the type of action that led to the change (e.g. “reception of message”), and

carries P ’s contamination. In the context of the example presented in Figure 6.4

the developer can use label history to identify the calls that led to dropping mytag

privilege (line 22) and getting contaminated with respect to mytag (line 33).
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Additionally, by using the death of a process as the triggering event, a final

type of debug domain identifies when processes exit, potentially due to bugs or

failures.

6.5 Resource Annotation

Asbestos represents resources primarily as tags. When debugging an application,

a developer often needs to identify and reason about opaque, 61-bit tag val-

ues. To facilitate debugging we introduced an optional, human understandable

name/description for each tag, that is stored maintained by the kernel and allows

us to explicitly annotate resources. To prevent information leakage through tag

names, we only allow a tag name to be set on tag creation time (Figure 6.4, line

6). Furthermore, access to a tag’s name requires either ownership of the tag or

privilege with respect to it. (note that multiple processes may have a tag at ⋆,

thus holding privilege with respect to that tag, but at most one may hold receive

rights — i.e. ownership).

6.6 Experiences and Evaluation

We want to demonstrate that debug domains are able to deliver policy-safe de-

bug messages with reasonable overhead. To that end, we have successfully used

debug domains to implement debugging tools and proof-of-concept debugging

tests. Label error debugging has been verified using instrumented test cases—

including situations where the user has no console access—and debug messages

were successfully collected. To evaluate the performance hit of debug domains we

modified the Asbestos Web server so that every tag it generates is added to a

label-error DD. Asbestos is running on a 2.8GHz Pentium 4 with 1GB of RAM,
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Number of AWS users
1000 5000 20000 50000 100000

Unmodified AWS 1652 1574 1533 1498 1479
Modified AWS 1651 1567 1493 1490 1454

Table 6.3: Throughput comparison comparison between the unmodified version
of the AWS and the version using debug domains. Each column corresponds to
the number of users in the system, ranging from 1000 to 100000. Measurements
correspond to connections per second.

Add member/ Debug message generation
connect port label (to sender/rcvr) syscall exit send()

cycles 2291 / 1275 31625 / 26316 12548 5606 at least 31140

Table 6.4: Cost in cycles of debug domain operations: adding of a member tag,
connecting a new port, and generating debug messages for label errors (addressed
to the sender and receiver of the offending message), system call tracing, and
exiting processes. For reference we have included the cost of an Asbestos send()
system call (used to send a message) in the less “costly” case (no payload, and
no discretionary labels attached to message).

connected on a 1Gbps switch. We ran throughput measurements and compared

our results to the unmodified AWS. As shown in Table 6.3, the performance hit

for the throughput of AWS is insignificant (overall less than 3% and in most

cases less that 1%), even for large numbers of users in the system. (The gen-

eral throughput improvement relative to previously reported data is due to an

improved label implementation [VEK07].)

We ran micro-benchmarks to measure the average cost of some major kernel

operations for debugging. The results, presented in Table 6.4, show that the cost

is reasonable for frequent operations, such as adding a member or connecting a

port to a DD, as well as for debug message generation. For label errors, debug

message generation requires the kernel to repeat the label checks that lead to

the error to capture the necessary details; for all debugging messages, including

label errors, the kernel must form the debug message and perform operations to

calculate its label. Table 6.4 also presents the cost of the base case for the send()
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system call, for reference. Notice that the cost of sending a message depends on

various factors: for example the cost is almost linear to the size of the discretionary

labels attached to the message. The base case presented on Table 6.4 corresponds

to zero sized payload and no discretionary labels attached to the message.1

System call tracing was used to implement an asynchronous strace() library

call. Similarly, label history debugging was used to implement a label tracing

library call (lt()) that reports all of a process’s label changes. Additionally, exiting

process debugging has been used to implement the Asbestos wait() library call.

Finally, we have implemented a simple debugger library that is using the debug

domain mechanisms to gather debugging information on behalf of one or more

processes. Each process may fork a new debugger by calling debugger spawn().

All privilege the process possesses at that time is inherited by the debugger, so

that debug information can be declassified even if the process loses privilege at a

later time. Library calls have been implemented to grant additional privilege to

an already existing debugger if needed.

As a “proof of concept” application, we have also built a simple tool around

the Muenster uploader of untrusted worker processes that would restart an AWS

worker within a DD. The tool then captured all debug messages the developer had

clearance to receive. Through a Web-based interface, the tool was able to provide

two basic functions: debugging console-like output (e.g. label error reports) and

system call tracing.

1For instance, if we use all four discretionary labels with 10, 100, 200 and 500 tags in each
of them the cost increases to 25035, 242890, 488224 and 1234840 cycles respectively.
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6.6.1 Discussion

We implemented and tested debug domains in Asbestos, but we believe that

the benefits of systematically modelling debugging privilege can improve other

DIFC systems’ programming model. Even DIFC systems whose design reduces

the amount of system state management challenges compared to Asbestos (e.g.

HiStar and Flume) lack a systematic way to represent and manage debugging

privilege.

6.7 Summary

Policy bugs are a serious problem in DIFC systems: not only do they interfere

with the application’s normal operation, but they may also pose serious threats to

application security. Debugging requires exposure of system information related

to the problem and that often contrasts the security guarantees of the system:

unchecked release of system state information almost always leads to leaking

information from a compartment, effectively violating information flow. Addi-

tionally, an application may hold insufficient privilege to inspect system state

necessary for debugging.

To address the policy debugging challenges in Asbestos, we introduced the

debug domain kernel mechanism that formally models debugging privilege. De-

bug domains implement a decentralized debugging primitive that adheres to the

information flow policies enforced by Asbestos. A debug domain represents privi-

lege to declassify debugging information out of a set of compartments represented

by a set of member tags. A second set of tags associated with the debug domain

represents the communication ports that to which the declassified debugging in-

formation will be released.
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We have used debug domains to implement tolls such as a debugger, sys-

tem call and label tracing libraries and we have found that they are a flexible

mechanism that can simplify development and improve the programming model,

through a number of features:

• developers can use debug domains to implement DIFC-safe debugging tools

• debugging privilege is managed in a decentralized fashion—in the spirit of

DIFC

• developers are able to perform fine-grained management of debugging priv-

ilege (at the granularity of compartments—as opposed to using an exces-

sively privileged debugger)

• debug domains are flexible enough to implement multiple different types of

debugging, such as label error debugging, system call tracing, label history

tracing and exiting process notification

• each process can create and manage an arbitrary number of debug domains,

with disjoint or overlapping member tags and debugging roles (e.g. one or

more label error debug domains)

• the runtime overhead of debug domains is below 2% and the cost of debug

domain operations (add/remove members, generate debug messages etc) is

reasonable
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CHAPTER 7

Conclusion

This thesis examined how we can improve the the programming model of decen-

tralized information flow control (DIFC) systems by providing DIFC-safe system

management mechanisms.

Our work was motivated by our experiences with the Asbestos DIFC system,

but our proposed solutions can be used to improve system management in other

DIFC systems as well.

Asbestos makes non-discretionary access control mechanisms available to un-

privileged users by implementing DIFC through the Asbestos labeling system.

Developers are given fine-grained, end-to-end control over the flow of information

in the system—without requiring any type of special system privilege—which

they can use to define application policy. Application policy specifies the rules

that govern information flow for a specific application and lies at the heart of

any DIFC application. The restrictions imposed by each separate policy as well

as the combination of all policies in conjunction, affect system management tasks

and introduce new challenges for developers.

In this thesis we investigated and proposed solutions for two important system

management challenges in Asbestos: policy management and debugging. We pro-

posed a policy description language able to express a wide variety of policies in a

human-friendly way. We have developed tools that translate high-level policy de-
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scriptions to equivalent Asbestos label configurations and optionally instantiate

the policies using application binaries.

Furthermore, we identified the requirements for information flow aware debug-

ging mechanisms that can assist developers without violating application policy.

To that end, we introduced the debug domain primitive and used it to imple-

ment debugging mechanisms and tools such as label error debugging, system call

tracing and label history tracking.

We tested our system management mechanisms using synthetic tests as well as

examples of interesting policies from Asbestos and HiStar and observed significant

improvement in the ease of policy description, development and elimination of

bugs.

7.1 Open Research Problems

This work is an important first step towards a better DIFC programming model,

that identified a fundamental problem: system management problems render the

DIFC programming model challenging for developers. We were able to investigate

and propose solutions for two pressing system management issues, but making

DIFC easier to work with and adopt requires further work that will help improve

the programming model.

Our policy description language is a first step towards better DIFC policy

management. The language interface could be improved in many interesting ways

that would give developers better control over policy description. For instance,

developers are expected to produce sensible policy descriptions and our parser is

currently unable to identify the configurations that are impossible to implement

using IFC. It would be useful to formalize the characteristics of policy descriptions
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that cannot be mapped to valid (and secure) label implementations so as to

identify such cases and handle them accordingly (e.g. produce helpful, diagnostic

error messages).

Our debug domain abstraction is able to represent system state management

privilege and allowed us to implement some preliminary debugging mechanisms

and tools. It would be very useful to improve the usability of our debugging

mechanisms, primarily by improving the existing debugger and by implementing

more tools and libraries that use debug domains.

Although policy management and debugging are two very important system

management problems, there are certain other interesting system management

issues that require a solution. For instance, resource management is another sen-

sitive system management issue that Asbestos is currently not dealing with. Ad-

dressing this problem in a DIFC-safe manner is a challenging task. Furthermore

it would be interesting to investigate whether the debug domain abstraction is

versatile enough to be used to model solutions for different classes of system

management problems, such as resource management.

Relative to policy management, it would also be interesting to investigate the

reverse problem of translating Asbestos label setups (e.g. snapshots of applica-

tion labels at runtime) to equivalent high-level policy descriptions. That could

facilitate debugging of policy problems that appear only at runtime (e.g. due to

interaction with the rest of the system). Being able to inspect runtime policy at

a higher level would be particularly useful for policy debugging, especially in the

case of bugs that appear only at runtime due to the interaction of the applica-

tion with the rest of the system. This problem is very challenging, since it is not

always easy to infer the policy from a given label setup.

Although this work is only a first step, hopefully these and other programma-
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bility improvements will bring the security benefits of DIFC to a wider community

of developers.
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APPENDIX A

Policy Examples

A.1 The Asbestos Web Server Policy

# Global default for compartments is "<>"

default <>

# Database compartment, fully isolated

comp DB {

default !

}

# Compartments for thedemux, the ID daemon, and the DB proxy

comp DEMUX IDD DBV {

default <>

}

# Compartment for the AWS worker base process

comp W {

default <

}

# External network daemon. Belongs to external, isolated compartment

# initialized localy through environment variables.

exec netd {

belongs (env NET_TS NET_TR default !)

# netd’s external (pre-existing) port, initilized localy

# through an environment variable.

port NETROOT {

env NETDHANDLE

}

}

# Database executable

exec database {

# Path to binary

bin /okdb

# The databese executable should belong to the CDB compartment

belongs DB

# Database port, used between for communication between the

# the database and the DB proxy. It is a restricted port

# (i.e. privilege is required to send messages to it) and its

# label belongs to CDB.

port DBP {

type restricted

name "database port"

belongs DB

}

# Environment variables made available to the database.

# Notice that "env*" means that the database will also be

# granted privilege with respect to the relevant ports

# while plain "env" does not grant privilege.
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env* OKDBHANDLE=port:DBP

env* YOURPORT=port:DBP

}

# Database initializer process. Fills the database with dummy user data.

exec dbinit {

bin /okdb-init -a

belongs DB

env* OKDBHANDLE=port:DBP

}

# Identity daemon. Used to authenticate users.

exec id_daemon {

bin /idd -db

belongs IDD

port HSYSTEM {

type restricted

}

port HANYONE {

type open

}

env HSYSTEM=port:HSYSTEM

env HANYONE=port:HANYONE

}

# Database proxy.

exec dbv {

bin /okws-dbv

belongs DB

belongs IDD

port DBVPORT {

type open

name "okws-dbv: self tag"

}

port DBVPRIVATE {

type restricted

belongs DB

}

env HSYSTEM=port:HSYSTEM

env HANYONE=port:HANYONE

env MYPORT=port:DBVPORT

env MYPORTPRIV=port:DBVPRIVATE

}

# Five different AWS worker base processes.

# Each of them provides a Web service (Web-shell, Sql front-end,

# login facility, user profile edit and profile view).

# Each base process uses event processes to server different users.

exec worker1 worker2 worker3 worker4 worker5 {

bin /okws-shell sh

bin /okws-sql sql

bin /okws-login login

bin /okws-edit edit

bin /okws-view view

belongs W

port WP {

type open

}

port WV {

# port that will be used as worker verify tag

type open

}

port DP {

type restricted

# This port belongs to demux. It is declared here

# because we need one of these per worker.
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owner demux

}

dynexec USER {

source demux

belongs (env USER_S USER_R default <)

file user-tmpl

port WORKER\_PORT {

type restricted

}

port UG {

type restricted

owner parent

belongs (env USERX USERXP default <)

}

env WRPORT=port:WORKER\_PORT

env* DPORT=port:DEMUX_USERP

env* UG=port:UG

}

env NETROOT=port:NETROOT

env* SELFPORT=port:WP

env* DBP=port:DBP

env UGRANT=port:UG

env DEMUXPORT=port:DEMUX_USERP

env* DP=port:DP

}

exec demux {

bin /okws-demux sh sql login edit view

belongs DEMUX

port DEMUX_USERP {

type open

}

port DEMUXPORT {

type open

}

# this actually translates to manny WPORTS:

# WPORT1=port:WP1, WPORT2=port:WP2 etc

env WPORT=port:WP

env DEMUXUSERP=port:DEMUX_USERP

env SELFPORT=port:DEMUXPORT

env* WORKERCTL1=control:worker1

env* WORKERCTL2=control:worker2

env* WORKERCTL3=control:worker3

env* WVERIFY=port:WV

env NETDHANDLE=port:NETROOT

#env HSYSTEM=port:HSYSTEM

env IDHANDLE=port:HANYONE

env DP=port:DP

}

# Pair-wise communication Rules

DB <> DBV

W <> netd

W <> DEMUX

USER <> netd

USER <> DBV

USER <> DEMUX
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A.2 HiStar’s ClamAV Policy

# The global default for compartments (i.e. the default default)

default <>

# We first declare the three compartments

comp USER {

default !

}

comp AV {

default <

}

comp PRINTER {

default <>

}

# Executable declassifying output to the tty

exec tty_printer {

belongs PRINTER

port PRINTER_PORT {

type restricted

}

env MYPORT=port:PRINTER_PORT

env AV_PORT=port:CLAMAV_PORT

}

# ClamAV process. Also spawns helper process belonging in same compartments

exec avscanner {

belongs AV

port MAIN_AV_PORT {

type restricted

}

env MYPORT=port:MAIN_AV_PORT

env PRINTER_PORT=port:PRINTER_PORT

}

# Process modeling private /tmp folder. Could be replaced by labeled FS

# This process also belongs to the externally initialized user compartment

exec private_tmp_file_server {

belongs AV

belongs (env USER_S USER_R default !)

port TMP_PORT {

type restricted

}

env MYPORT=port:TMP_PORT

env AV_PORT=port:MAIN_AV_PORT

}

# Process modeling private user data. Could be replaced by labeled FS

exec user_data_server {

belongs USER

env AV_PORT=port:MAIN_AV_PORT

}

# Pair-wise communication Rules

PRINTER <> AV

PRINTER <> USER

AV < USER

A.3 Policy similar to HiStar’s VPN isolation

# We declare the five compartments

comp VPN INTERNET {

default <
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}

comp INTERNET_IPSTACK VPNCLIENT {

default <>

}

comp NETD {

default !

}

# Both the vpn browser and the vpn IP stack belong to CVPN

exec browser_vpn ipstack_vpn {

belongs VPN

}

exec ipstack_internet {

belongs INTERNET

}

exec browser_internet {

belongs INTERNET

belongs INTERNET_IPSTACK

}

exec vpn_client {

belongs VPN

}

exec netd {

belongs NETD

belongs INTERNET

}

# Pair-wise communication Rules

VPNCLIENT <> VPN

VPNCLIENT <> INTERNET

INTERNET_LWIP <> NETD

A.4 Policy similar to Jif’s hospital example

# The external compartment the "hospital" process belongs to

comp H {

env HOSPITAL_S HOSPITAL_R default <>

}

# Compartments for data extractor, researchers, statistics package, and DB

comp E R SP DB {

default !

}

# Compartment for the process that outputs results of study

comp OUT {

env OUT_S OUT_R default <>

}

# Pair-wise communication Rules

H <> E

E > R

R <> SP

SP <> DB

R > OUT
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