Make Least Privilege a Right (Not a Privilege)

Maxwell Krohri, Petros Efstathopoul6sCliff Frey*, Frans KaashoekEddie Kohler,
David Mazeres$, Robert Morrig, Michelle Osborng Steve VanDeBogarand David Ziegler
*MIT fTUCLA INYU

asbestos@scs.cs.nyu.edu

ABSTRACT low vulnerabilities to spread, and process-sized compart-

: o ts are too coarse-grained. We then propose a solution
Though system security would benefit if programmersmen ;
routinely followed theprinciple of least privilegg24], based ordecentralized mandatory access congbr].

the interfaces exposed by operating systems often s:tan-gqe end resultis a new operating system caflstlestos

in the way. We investigate why modern OSes thwart se-, | ESSONS FROM CURRENT SYSTEMS
cure programming practices and propose solutions. o
Modern Unix-like operating systems provide a limited

1 INTRODUCTION API for running programs according to POLP. We ex-

Though many software developers simultaneously rever@Mine how far administrators and programmers can push
and ignore the principles of their craft, they reserve spelhese features if POLP is their goal.

cial sanctimony for theprinciple of least privilege or
POLP [24]. All programmers agree in theory: an ap-
plication should have the minimal privilege needed toBecause Unix grants privilege with coarse granularity,
perform its task. At the very least, developers must fol-many Unix applications acquire more privileges than
low five POLP requirements(1) split applications into they require. These “greedy applications” can be tamed
smaller protection domains, or “compartments”; (2) as-with thechr oot orj ai | system calls. Both calls con-
sign exactly the right privileges to each compartment; (3)fine applications tgails, areas of the file system that
engineer communication channels between the compargdministrators can configure to exclude setuid executa-
ments; (4) ensure that, save for intended communicatiorfles and sensitive files. FreeBSO'ai | goes further,

the compartments remain isolated from one another; antestricting a process’s use of the network and interpro-
(5) make it easy for themselves, and others, to perform &ess communication (IPC). System administrators with
security audit. enough patience and expertise aanr oot or j ai |

Unfortunately, modern operating systems render thestandard servers such as Apache [1], BIND [3] and send-
application of these requirements onerous, dangerous, #hail [26], though the process resembles stuffing an ele-
impossible. In our experience (detailed in Section 2.2)phant into a taxicab.
building least-privileged software is cumbersome and Even when possible, thehroot andjail ap-
labor-intensive: following POLP feels more like an abuseproaches face more fundamental drawbacks:
of the operating system’s interface than a judicious use of Jails are heavyweight. The jailed file system must
its features. Most programmers spare themselves thes@ntain copies of system-wide configuration files (such
difficulties by reverting to monolithic, over-privileged asresol v. conf), shared libraries, the run-time linker,
application designs. Unsurprisingly, this exposes mahelper executable files, and so on. Maintaining collec-
chines to attacks both old (remote attacks on privilegedions of duplicated files is an administrative difficulty,
servers) and new (“install attacks”, which take advan-especially on systems with many jailed applications.
tage of users’ willingness to run high-privilege instadler Jails are coarse-grained. Running a process in a
to infect machines with adware, spyware, or malware)jail is similar to running it on its own virtual machine.
We cannot write bug-free applications or prevent hon-Two jailed applications can share files only if one’s
est users from occasionally executing malicious code. Innamespace is a superset of the other, or if inefficient
stead, our best hope is to contain the damage of evil codeorkarounds are used, such as NFS-mounting a local file
by resurrecting POLP. system.

In this paper, we examine some ways that current Jails require privilege. Unprivileged users may not
OSes discourage development of least-privilege applicall chr oot orj ai | .1 Jails are therefore ill-suited for
cations (Section 2), then propose OS design ideas thatontaining the many untrusted applications that should
might encourage it instead. A first approximation of anot have privileges, such as executable email attachments
POLP-friendly system is one based capabilities dis- or browser plugins.
cussed in Section 3. Though capabilities have historically Finally,chr oot orj ai | 's ex post factomposition
flummoxed application designers, we present a more usef security is no substitute for POLP-based design. For
able interface, based on the familiar Unix file system. Inexample, a typical dynamic content Web server (such as
Section 4, we discuss shortcomings in this proposed deApache with PHP [18]) runs many logically unrelated
sign: weaknesses in the separated system might still akcripts within the same address space. A vulnerability in

21 chrootingorjail ing Greedy Applications

Incoming priate shared libraries, configuration files, run-time
HTTP launcher linker, and worker executables.

Connections
2. Obtain unused UID and GID ranges on the system.
3. Assign thath worker its own UIDu; and GIDg;.

4. Allocate a writable coredump directory for each
uID.

5. Change théth worker’'s executable to have owner
r oot , groupg;, and access modi410.

6. Callchr oot .

/search
7. For each worker procegill all processes running
as usew; or group 1Dg;; fork; change user ID to;
> >) and group ID tag;; chdi r into the dedicated dump
publisher . h
- directory; and calexec on the correct executable.
PW inbox
data data Thechown callin Step 5, thehr oot call in Step 6,
and theset ui d call in Step 7 all require privileged sys-
Figure 1: Block diagram of the OKWS system. Standard processes ardem access, so the launcher must run as root. Unix offers
shaded, while site-specific services and databases areshavhite. no guarantees of an atomic UID reservation (as required
The privilegedlauncherprocess launches thdemux publisher log- ; ~ ; P ; _
gerand the site-specific services. The databases shown mibat bi ”.1 Step 2) or r.ace free file system permsspn manlpula
running locally, or on different machines. Uong(asrequwedtmoughoqo.Evgnlgnonpgthesepo-
tential security problems, this design requires involved

any one script exposes all other scripts to attack, regardPC to coordinate worker and helper processes.

/show-1inbox

/change-pw

less of whether the server is jailed. Other systems use similar techniques to solve related
o _ problems. Examples include remote execution utilities
2.2 Ad-Hoc Privilege Separation such as OpenSSH [23] and REX [10], and mail transfer

True privilege separation is possible on Unix through a@dents such as gmail [2] and postfix [21]. Considering
collection of ad-hoc techniques. For instance, our POLPIhese applications and others, a trend emerges: in each
based OK Web Server (OKWS) [12] uses a pool ofinstance, the intricate mec_hanlcs of pnwlege separation
worker processes to sequester each logical function (i.ire invented anew. To audit the exact security procedures
/ show- i nbox, / change- pw, and/ sear ch) of the ~ Of these applications, one must comb tens of thousands
site into its own address space. Tdemux a small, un- Of lines of code, each time learning a new system. Even
privileged process, accepts incoming HTTP requests, arBUtomated tools that separate privileged operations [5]
alyzes their first lines, and forwards them to the appropri/€duire root access.
ate workers u.sing filg descriptor. passing. Workers then, 3 A User-L evel POLP Library?
respond to clients directly. A privilegelduncher pro- i .]
cess starts the suite of processes, ensuring that all af! first glance, a user-level POLP library might seem
jailed into empty subtrees of the file system, and that theyRPle to abstract the security-related specifics of appli-
do not have the privileges to interact with one anothercations like OKWS, gmail, and so on. One such ex-
Finally, since workerschr oot environments prohibit ample of this approach is found in the Polaris system
them from accessing the root file system directly, theyfor Windows XP [30], which applies POLP to virus-
write HTTP log entries and read static HTML content Prone client applications like Web browsers and spread-
via small, unprivileged helper processes: ibgger and sheet$viachr oot -I|!<e containers. _Such §q|utlons have
the publisher respectively. Figure 1 shows a block dia- three drawbacks. First, they require privileged access
gram of a simple OKWS configuration. to the system. Second, libraries must work around the
The goal of this design is to separate application logidack of good OS support for sharing across containers:
into disjoint compartments, so that any local vulnera-s!”C?Ja'|ed processes WOI’k.WIth copies of.flles, synchro-
bility (especially in site-specific work processes) can-hization schemes are required to reconcile copies after
not spread. In particular, workers cannot send each othéihanges. (For example, Polaris email plug-ins run in a
signals or trace each other's system calls, they canndfil With a copy of the attachment; a persistent “synchro-
access each other's databases, no worker can alter af§Zel” Process updates the original if the plug-in changes
executable or library, and workers cannot access each€ copy.) Finally, we suspect that POLP techniques used
other’'s coredumps. Unfortunately, achieving these natuln more complicated servers such as OKWS do not gen-

ral requirements complicates OKWS. Its launcher must:€ralize well. As evidence, both OKWS and REX, an
ssh-like login facility, use the same libraries (the SFS

1. Establish a&hr oot environment, with the correct toolkit [16]) but share little security-related code. This
file system permissions, that contains the appro-comes as no surprise since the two have very different se-

curity aims: OKWS hides most of the file system, while ization. Some do not involve any capability-like objects;
REX exposes it to authorized users; OKWS must supporbthers use hard-wired capabilities hidden in the kernel,
millions of possible users, while REX serves only thosesuch as “current working directory” and “file system
with login access to a given machine; application design+oot”. User-level emulation of these problematic calls—
ers can extend OKWS with site-specific code, while REXwhich includeopen—is messy, if not impossible; but
runs unmodified. Fitting both POLP usages into one genscrappingopen in the name of POLP seems unlikely to
eral template seems a tall order. compel the average programmer.

2.4 Unix asa Capability System 3 OPERATING SYSTEM SUPPORT FOR POLP

One of the main difficulties with ad-hoc privilege sepa- With the lessons from Unix, we can now imagine a
ration is that starting with a privileged process and subPOLP-friendly operating system interface, one in which
tracting privileges is more cumbersome and error-pronéll System calls are capability-based and virtualizable
than starting with a totally unprivileged process andlike read andvyr ite. Addmg universal virtualization
adding privileges. Unix-like operating systems in generaSUPPO to a Unix-like capability system would cover all
favor the subtractive model, while capability-based operfiveé POLP requirements. With capabilities, application
ating systems [4, 28] favor the additive one. But Unix file Programmers can split their program into isolated com-
descriptors are in fact capabilities. By hobbling systemPartments (#1 and #4), granting each compartment ex-
calls sufficiently—either through system call interposi- actly the privileges necessary to complete its task (#2).
tion [7, 22] or small kernel modifications—we can em- With virtualization, programmers use standard interfaces

ulate those semantics of capability-based operating sy&nd libraries for communication between these compart-
tems that enable privilege separation. ments (#3), and auditors can understand this communica-
The idea is to allow calls that use already-opened filg!on DY intérposing at the interfaces (#5). A new take on
descriptors (such aad, wr i t e, andmmap), but shut capabilities—one whose Unix-like appearance would be
off all “sensitive” system calls, including those that cre- friendlier to application programmers—could simplify
ate new capabilities (such apen), assign capabilities e application of POLP. This section presents a hypo-
control of named resources (such tasnd), and per- thetical design for such a system, which we’ll ca#inix

form fi]e system mp_d_ifications, permissions changes, OB 1 Asnix Design
IPC without capabilities (such ashown, set ui d, or o)
ptrace). In OKWS, the launcher could apply such a !N Asnix, interactions between a process and other parts
policy to the worker processes, which only require ac-Of the system take the form afessagesent todevices
cess to inherited or passed file descriptors. The launchdpevices include processes and system services as well
could run without privilege, and would no longer nay- @ hardware drivers. Messages follow the outline “per-
igate the system call sequence seen in Section 2.2. Eéﬁ’rm operationO on capabilityC, and send any reply
disabling all unneeded privileges, the operating systeni0 capability R" The kernel forwards this message to
could enforce privilege separation by default. the device that o_r|g|nally |ssue_6. There are a small
This works because Unix’s capability-like system NUmber of operation types, as in NFS [25] and Plan 9's
calls arevirtualizable Processes are usually indifferent 9P [19]:LOOKUP, READ, WRI TE, and so forth. The mes-
to whether a file descriptor is a regular file, a pipe to an-S2g€ types and their associated syntax are conventions;
other process, or a TCP socket, since the saezs and the kernel only enforces or interprets those messages sent
wri t e calls work in all three cases. In practical terms, to _kernel devices. Requests and replies are sent and re-
virtualization simplifies POLP-based application design.C€ved asynchronously. ,
Splitting a system into multiple processes often involves 1Nis design aids virtualization. All of a process's in-
substituting user-space helper applications for kermel se téractions with the system—whether with the kernel or
vices; for instance, OKWS services write log entries toOther user applications—take the same form, explicitly
theloggerinstead of a Unix file. With virtualizable sys- nvolve capabilities, and shunimplicit state. Consider, f
tem calls, user processes can mimic the kernel’s interéx@mple, the Unix cabpen(” f oo™) . This call in As-
face; programmers need not rewrite applications wherfiix would translate to a message that a pro¢essnds
they choose to reassign the kernel’s role to a process. 10 the file server devicES
More important, virtualizable system calls enainie P — (Ccwp, LOOKUP, " f 00", Cp) — FS
terposition If an untrustworthy process asks for a sen-The first argument is a capabiliGwp that identifieP’s
sitive capability, a skeptical operator can babysit it by current working directory. The second is the command
handing it a pipe to an interposer instead. The interposeto perform, the third represents the arguments, and the
allows harmless queries and rejects those that involvéourth is the capability to which the file system should
sensitive information. If the kernel APl is virtualizable, send its response. Since Asnix makes explicit the CWD
then the operator need not even recompile the untrusistate hidden in the Unix system call, either the file server
worthy process to interpose on it. or a user process masquerading as the file server can an-
Unfortunately, most Unix system calls resist virtual- swer the message.

3.2 Naming and Managing Capabilities Moreover, all capabilities available to the Asnix
When an Asnix procesB, launches a child proces, OKWS processes are virtualizable. Workers accept con-
it typically grantsP, a number of capabilities, rang- nections ol okws/ | i st'en regardless ofwhetherthey
ing from directories on the file system to opened net-Cidinate from the kemel's TCP stack or themux Sim-
work connections. How caR; then access these capa- ilarly, logging might be to a raw file or throggh alogging
bilities? Traditional capability systems such as EROS fa Process that enforces append-only behavior; worker pro-

vor global, persistent naming, but persistence has provefieSSes are oblivious to the difference.
cumbersome to kernel and application designers .[27]. 3.4 Discussion

Instead, we advocate a per-process, Unix-style
namespace. Under Asni®; makes capabilities avail- So far, the proposed system features no individually
able to P, as files inP,’s namespace. Suppos®’s novel ideas; rather, it finds a new point in the OS de-
namespace contains a tree of files and directories und&gn space amenable to secure application construction.
/ secr et , andP; wishes to granP, access to files un- Similar effects might be possible with message-passing
der/ secr et/ bob. As in Plan 9 [20],P, can mount Microkernels, or unwieldy system call interposition mod-
/ secr et/ bob as the directory horre in P,'s names- ules. But in Asnix, the security primitives are few and
pace. Unlike in Plan 9, the state implicit in the per- simple, for both the kernel and application developer. Al-
process namespace is handled at user level, and the kéhough the interface exposed to applications feels like
nel only traffics in messages sent to capabilities. For exthe familiar Unix namespace (with added flexibility for
ample, when the proce$s opens a file undethone, unprivileged, fine-grained jails), an application’s syste
the user level libraries translate the directdtyorre to interactions are entirely defined by its capabilities, and

some capabilitC. The kernel sees a LOOKUP messageAsnix behaves like a capability system for the purposes
onC. of security analysis.

3.3 OKWSUnder Asnix 4 FINE-GRAINED POLP wITH MAC

We now consider what OKWS might look like on As- Though we believe Asnix is an improvement over the
nix. Similar to before, the application suite consists of status quo, it still falls short of enabling the high-level,
alauncher demuxand worker processes. Under Asnix, end-to-end security policies we seek. Applications in As-
the logger process simply enforces append-only accessix can only express security policies in termspub-
to a log file, and might be useful for many applications cessesbut processes often access many different types
(much likesysl ogd on today’s systems). No publisher of data on behalf of different users. A security policy
process is needed. based on processes alone can therefore conflate data
The launcher starts each worker process with arflows that ought to be handled separately. For exam-
empty namespace (and thus no capabilities), then augle, OKWS on Asenix achieves the policy that data
ments their namespaces as follows: from a/ change- pwprocess cannot flow to a corrupted
/ show i nbox process; but the policy says nothing
about whether usdy’s data within/ show- i nbox can
flow to userV, meaning an attacker who compromises
e In the demu’s namespace, mounts TCP port 80/ show- i nbox might be able to read an arbitrary user’s
on/okws/|isten. For each worker process private e-mail.
makes a socket pair and connects one end to Of course, a much better policy for OKWS would be
/ okws/ wor ker/ i. that “only userU can access useéi’s private data”. We
e In worker process's namespace, mounts the other would like to separate users from one another, much as
end of the above socket pair tmkws/ | i sten. ~ We separated services in Section 3. Though a user ses-
Mounts a connection to the logger bokws/ | og. Sion involves many different processes (such asdthe
Mounts a read-only capability to the root HTML di- Mux databasésand worker processes), a policy for sep-
rectory on/ VWww. arating users should be achievable with a small, simple,
isolated block of trusted code, as opposed to hidden au-
thorization checks scattered throughout the system. This
section extends Asnix to a new systefisbestoswhose
The launcher then launches all processes as before. kernel uses flexible mandatory access control primitives
Under Unix, the launcher had to carefully constructto enforce richer end-to-end security policies. We are
jails, physically copying over files and invoking custom currently designing and building Asbestos as a full op-
helper applications like the publisher and logger to limit €rating system for x86 machines.
file system access. Asnix, by contrast, lets the Iaunche&
expose capabilities to child processes at arbitrary points”
in their namespaces. Each child receives a synthetic fil©ne possible approach to better isolation, which we call
system perfectly suited to its task. complete isolationwould be to prohibit server-side pro-

¢ In the loggers namespace, mounts a logfile on
/ okws/ | og.

¢ In all namespaces, makes required shared librarie
available undef | i b.

1 Completelsolation

cesses from speaking for multiple users. The server mustates trustedleclassifierssuch as statistics collectors,
be prepared to run a process for every service—user paithat can act on behalf of multiple users and traverse sub-
trusted code irdemuxwould route traffic accordingly. process boundaries within a virtual address space.
Similarly, a database process exists for each user, writing With decentralized, fine-grained MAC, OKWS can
to a user-specific database file. Capabilities can guararachieve a strong end-to-end security policy. The only
tee separation between processes as usual. More drastiasted code is dabeler module upstream oflemux
separation is possible with virtual machines [11, 32] sowhich works as follows. When usé&} connects to the
that each machine can only speak for one user. Web server, théabeler peeks at the incoming TCP con-
Complete isolation hides a user's data from othernectionT and authorizes it based on session state or login
users, but at significant cost. First, such systems are nanformation. If authorization succeeds, tlapelerlabels
scalable, requiring either an expensive fork-accepteclos T with U’s label. Now, any process that reads fram
model or a huge pool of largely-idle per-user servers.and writes to memory will automatically tag that mem-
Second, these systems do not accommodate conveniedity page withJ’s label, and will therefore push that page
data sharing, even with trusted processes. While tradiinto U’s sub-process. The kernel allows an unprivileged
tional systems could use simple SQL statements to agerocess to accumulate labels for different users (such as
gregate statistics over rows of a site’s databases, confor U andV), but it forbids that process from writing to a
pletely isolated systems would have to search millionsnetwork channel not labeled with both. ThusUifcom-
of separate files, perhaps over NFS in the case of sep@romises a server process and convinces it to read from
rated virtual machines. Separation in this case requires ¥'s memory, the server process will acquire labels for
tremendous sacrifice in flexibility for data management.bothU andV, and therefore cannot write out 1o

Data will not flow where it shouldn’t, because it cannot .)
flow at all. 4.3 Discussion

) _) This decentralized MAC design, combined with the ca-
4.2 Decentralized, Fine-Grained MAC pability architecture from Section 3, makes POLP con-

Asbestos uses decentralized, fine-grained mandatory a¥eénient and practical for an OKWS-like Web server.
cess control (MAC) primitives to solve this problem in We have no proof that other applications would simi-
a flexible and scalable manner. Subjects on the systeni@rly benefit from Asbestos, but we are optimistic. As-
such as processes, I/0 channels, and files, are assignBgStos provides simple, flexible, and fine-grained mech-
labels and special privilege is needed to remove a labeNiSMs for achieving the five important POLP require-
once applied. Furthermore, a subject transmits its label§ents without sacrificing performance.
to any other objects that it successfully communicate% RELATED WORK
with. With labels, Asbestos tracks all subjects that have
accessed a given object, whether directly or via proxy. Asbestos proposes the marriage of previous ideas in
We propose two important modifications to tradi- systems: the capability-based operating system [4, 13,
tional MAC-based operating systems. First, decentral28, 33], the per-process name space [20], the virtualiz-
ization [17]: processes can create their own labelingable kernel interface (the logical extension of system-
schemes on the fly, so that a Web server can associatall interposition libraries [7, 22]), and decentralized
each remote user with her own label. Second, labels apMAC [17].
ply at the fine-grained level of individual memory pages, Naturally, other operating systems predating As-
so that a single process can act on behalf of mutually disbestos meet related design goals or offer similar features.
trustful users without fear of leaking data among them.Message-based operating systems such as L4, Amoeba,
Taken together, these two modifications allow applica-V, Chorus and Spring can isolate system services by run-
tion designers to dynamically partition server processesing them as independent, user-level processes and pro-
into isolatedsub-processesvhere a sub-process consists vide natural support for interposition through message-
of a set of virtual pages that share the same label. based interfaces [14]; Trusted Mach in particular views
When a server process receives a message, it is amessage-passing from a security perspective [6]. But
tomatically assigned to a sub-process based on the labpbrts in microkernel systems are coarse as capabilities
of the message’s source. Processing a message from usg; for instance, a process can have a capability for the
U “contaminates” the process witl's labels. As in tra- file server but not for a particular directory. For POLP,
ditional MAC, contamination with the labé) prevents application programmers need arbitrary collections of
a process from accessing resources forbidden from usepecific capabilities; in this respect, the microkernels of
U, such as usé¥’s network connection. Thus, the kernel yesteryear do not fit the bill.
must allow a process speaking on behalf of multiple users The Flask System applies MAC to the Fluke Micro-
to purge its labels without leaking data. Asbestos lets &ernel [29]. Many of Flask’s core design principles have
process flush its register state, remap its memory, antbund a modern incarnation in SELinux [15], which,
clear its labels, allowing it to serve a request on behalf ofike TrustedBSD [31], adds mandatory access control to
a different uselV. However, the system still accommo- popular Unix systems. In both, static policy files dic-

tate which resources applications might access, and hoy5] P. Loscocco and S. Smalley. Meeting critical securitjeotives
processes can interact with one another. Such systems with security-enhanced linux. IRroceedings of Ottawa Linux

are attractive because they preserve the POSIX interfa

Symposium 20Q0Tune 2001.
6] D. Mazieres. A toolkit for user-level file systems. In

to which many programmers are accustomed. However, ~ proceedings of the 2001 USENIpages 261-274. USENIX,

their policy extension model, which is based on privi-

June 2001.

leged files and kernel modules, appears to fall short oft7] A. C. Myers and B. Liskov. A decentralized model for

the decentralized and uniformly-analyzable policies im-

plemented by Asbestos labels.

information flow control. IProceedings of the 16th ACM
Symposium on Operating Systems Principteges 129-142,
Saint-Malo, France, October 1997. ACM.

Type safety is another way to enforce operating[18] PHP: Hypertext processdnt t p: // www. php. net .

system security. Coyotos combines capabilities with!19] R-Pike, D. Presotto, S. Dorward, B. Flandrena, K. Thoomps

language-level verification techniques [27]. Singularity

H. Trickey, and P. Winterbottom. Plan 9 from Bell Labs.
Computing System8(3):221-254, Summer 1995.

combines strong isolation with a type-safe ABI [8]. At [20] R. Pike, D. Presotto, K. Thompson, H. Trickey, and
user level, the Java Sandbox uses customizable policies P. Winterbottom. The use of name spaces in Plan 9. In

to specify an applet’s access rights; dynamic sandboxing

Proceedings of the 5th ACM SIGOPS Workshdpnt
Saint-Michel, 1992.

shows these policies can be automatically produced [9].21] postfix.ht t p: / / waw. post i x. or g.

ACKNOWLEDGMENTS

[22] N. Provos. Improving host security with system call pis. In
Proceedings of the 12th USENIX Security Sympospages
257-271, Washington, DC, August 2003.

The authors thank Lee Badger, Butler Lampson, Mikel23] N. Provos, M. Friedl, and P. Honeyman. Preventing peiyd
Walfish and the reviewers. This work was supported by ~ €scalation. Ir.2th USENIX Security SymposiLiashington,

D.C., August 2003.

DARPA grants MDA972-03-P-0015 and FA8750-04-1- [24] J. H. Saltzer and M. D. Schroeder. The protection ofrimfation

0090, and by joint NSF Cybertrust/DARPA grant CNS-

0430425. David Mazres and Robert Morris are sup-
ported by Sloan fellowships.

REFERENCES

(1]

(2]
(3]

(4]

(5]

(6]

(7]

(8]

(9]

(20]

[11]

[12]

[13]

[14]

The Apache Software Foundation. Apache.

http://ww. apache. org.

D. J. Bernstein. gmailhtt p: //cr.yp.to/gmail . htm .
Internet Systems Consortium. Berkeley Internet Name Daemon
http://ww.isc.org/sw bind.

A. C. Bomberger, W. S. Frantz, A. C. Hardy, N. Hardy, C. R.
Landau, and J. S. Shapiro. The KeyKOS nanokernel
architecture. IUSENIX Workshop on Microkernels and Other
Kernel ArchitecturesUSENIX, 1992.

D. Brumley and D. X. Song. Privtrans: Automatically
partitioning programs for privilege separation. WSENIX
Security Symposiurpages 57-72. USENIX, 2004.

T. Fine and S. E. Minear. Assuring distributed trusted mdo
Proceedings of the 1993 IEEE Symposium on Security and
Privacy, page 206, Washington, DC, USA, 1993. IEEE
Computer Society.

I. Goldberg, D. Wagner, R. Thomas, and E. A. Brewer. A secur
environment for untrusted helper applicationsPhoceedings of
the 6th Usenix Security Symposiusan Jose, CA, USA, 1996.
G. C. Hunt and J. R. Larus. Singulairty design motivation.
Technical Report MSR-TR-2004-105, Microsoft Corporation
Dec. 2004.

H. Inoue and S. Forrest. Anomaly intrusion detection in
dynamic execution environments. NSPW '02: Proceedings of
the 2002 workshop on New security paradigpeges 52—60.
ACM Press, 2002.

M. Kaminsky, E. Peterson, D. B. Giffin, K. Fu, D. M&zes, and
M. F. Kaashoek. REX: Secure, extensible remote execution. In
Proceedings of the 2004 USENIpages 199-212, Boston, MA,
June-July 2004. USENIX.

P. Karger, M. Zurko, D. Bonin, A. Mason, and C. Kahn. A
retrospective on the VAX VMM security kerneTransactions

on Software Engineerind 7(11):1147-1165, 1991.

M. Krohn. Building secure high-performance web sersiogth
OKWS. InProceedings of the 2004 USENIBoston, MA,
June—July 2004. USENIX.

H. Levy. Capability-based Computer Systenisgital Press,
1984.

J. Liedtke. Toward real microkernel€ommunications of the
ACM, 39(9):70-77, 1996.

in computer systemd$2roceedings of the IEEE
63(9):1278-1308, Sept. 1975.

[25] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and B.rLyo
Design and implementation of the Sun network filesystem. In
Proceedings of the Summer 1985 USENIXges 119-130,
Portland, OR, 1985. USENIX.

[26] The Sendmail Consortium. Sendmail.
http://ww. sendmai |l . org.

[27] J.S. Shapiro, M. S. Doerrie, E. Northup, S. Sridhar, and
M. Miller. Towards a verified, general-purpose operatingtesn
kernel. In G. Klein, editorProc. NICTA Formal Methods
Workshop on Operating Systems VerificatiBgdney, Australia,
2004. NICTA Technical Report 0401005T-1, National ICT
Australia.

[28] J.S. Shapiro, J. Smith, and D. J. Farber. EROS: a fasbddpa
system. InProc. Symposium on Operating Systems Principles
pages 170-185, 1999.

[29] R. Spencer, S. Smalley, P. Loscocco, M. Hibler, D. Anéers
and J. Lepreau. The flask security architecture: Systemostipp
for diverse security policies. Ilm Proceedings of the Eighth
USENIX Security Symposiyugust 1999.

[30] M. Stiegler, A. H. Karp, K.-P. Yee, and M. Miller. PolariVirus
safe computing for windows XP. Technical Report
HPL-2004-221, December 2004.

[31] R. N. M. Watson. TrustedBSD: Adding trusted operatipgtem
features to FreeBSD. IRroceedings of the FREENIX Track:
2001 USENIX Annual Technical Conferenpages 15-28.
USENIX Association, 2001.

[32] A. Whitaker, M. Shaw, and S. D. Gribble. Scale and
performance in the Denali isolation kernel. froceedings of
the 2002 Symposium on Operating Systems Design and
Implementation (OSDJ)Dec. 2002.

[33] M. V. Wilkes and R. M. NeedhaniThe Cambidge CAP
Computer and its Operating Systehorth Holland, 1979.

NOTES

IWere it not for this prohibition, unprivileged users coulseicon-
trol of thechr oot ed top-level directory to elevate privileges. The at-
tack is to make a new directofyt np/ f 0o, hard link from/ t np/

f oo/ su to the systensu, write a new password filét np/ f oo/
et ¢/ passwd, call chroot on/tnp/f oo, and then calsu from
within the jail.

2polaris appears not as well-suited for larger servers.

3We assume for simplicity that databases run locally, though al
concepts discussed can generalize to distributed depldgmen

